Parameterized regulator synthesis for bimodal linear systems based on bilinear matrix inequalities.
By the use of flatness the problem of pole placement, which consists in imposing closed loop system dynamics can be related to tracking. Polynomial controllers for finite-dimensional linear systems can then be designed with very natural choices for high level parameters design. This design leads to a Bezout equation which is independent of the closed loop dynamics but depends only on the system model.
Processes modeled by a timed event graph may be represented by a linear model in dioïd algebra. The aim of this paper is to make temporal control synthesis when state vector is unknown. This information loss is compensated by the use of a simple model, the “ARMA” equations, which enables to introduce the concept of predictability. The comparison of the predictable output trajectory with the desired output determines the reachability of the objective.