Displaying 21 – 40 of 71

Showing per page

Design of a multivariable neural controller for control of a nonlinear MIMO plant

Stanisław Bańka, Paweł Dworak, Krzysztof Jaroszewski (2014)

International Journal of Applied Mathematics and Computer Science

The paper presents the training problem of a set of neural nets to obtain a (gain-scheduling, adaptive) multivariable neural controller for control of a nonlinear MIMO dynamic process represented by a mathematical model of Low-Frequency (LF) motions of a drillship over the drilling point at the sea bottom. The designed neural controller contains a set of neural nets that determine values of its parameters chosen on the basis of two measured auxiliary signals. These are the ship's current forward...

Direct algorithm for pole placement by state-derivative feedback for multi-inputlinear systems - nonsingular case

Taha H. S. Abdelaziz, Michael Valášek (2005)

Kybernetika

This paper deals with the direct solution of the pole placement problem by state-derivative feedback for multi- input linear systems. The paper describes the solution of this pole placement problem for any controllable system with nonsingular system matrix and nonzero desired poles. Then closed-loop poles can be placed in order to achieve the desired system performance. The solving procedure results into a formula similar to Ackermann one. Its derivation is based on the transformation of linear...

Discrete-time predictive control with overparameterized delay-plant models and an identified cancellation order

Zdzisław Kowalczuk, Piotr Suchomski (2005)

International Journal of Applied Mathematics and Computer Science

The paper presents several solutions to the discrete-time generalized predictive (GPC) controller problem, including an anticipative filtration mechanism, which are suitable for plants with nonzero transportation delays. Necessary modifications of the GPC design procedure required for controlling plants based on their non-minimal models are discussed in detail. Although inevitably invoking the troublesome pole-zero cancellation problem, such models can be used in adaptive systems as a remedy for...

Eigenstructure assignment by proportional-plus-derivative feedback for second-order linear control systems

Taha H. S. Abdelaziz, Michael Valášek (2005)

Kybernetika

This paper introduces a complete parametric approach for solving the eigenstructure assignment problem using proportional-plus-derivative feedback for second-order linear control systems. In this work, necessary and sufficient conditions that ensure the solvability for the second-order system are derived. A parametric solution to the feedback gain matrix is introduced that describes the available degrees of freedom offered by the proportional-plus-derivative feedback in selecting the associated...

Evolutionary optimization of interval mathematics-based design of a TSK fuzzy controller for anti-sway crane control

Jarosław Smoczek (2013)

International Journal of Applied Mathematics and Computer Science

A hybrid method combining an evolutionary search strategy, interval mathematics and pole assignment-based closed-loop control synthesis is proposed to design a robust TSK fuzzy controller. The design objective is to minimize the number of linear controllers associated with rule conclusions and tune the triangular-shaped membership function parameters of a fuzzy controller to satisfy stability and desired dynamic performances in the presence of system parameter variation. The robust performance objective...

Existence of pole-zero structures in a rational matrix equation arising in a decentralized stabilization of expanding systems

Dibyendu Baksi, Kanti B. Datta, Goshaidas Ray (2002)

Kybernetika

A necessary and sufficient condition for the existence of pole and zero structures in a proper rational matrix equation T 2 X = T 1 is developed. This condition provides a new interpretation of sufficient conditions which ensure decentralized stabilizability of an expanded system. A numerical example illustrate the theoretical results.

Fixed poles of H 2 optimal control by measurement feedback

Jean-François Camart, Basilio del-Muro-Cuéllar, Michel Malabre (2002)

Kybernetika

This paper is concerned with the flexibility in the closed loop pole location when solving the H 2 optimal control problem (also called the H 2 optimal disturbance attenuation problem) by proper measurement feedback. It is shown that there exists a precise and unique set of poles which is present in the closed loop system obtained by any measurement feedback solution of the H 2 optimal control problem. These “ H 2 optimal fixed poles” are characterized in geometric as well as structural terms. A procedure...

Infinite eigenvalue assignment by an output feedback for singular systems

Tadeusz Kaczorek (2004)

International Journal of Applied Mathematics and Computer Science

The problem of an infinite eigenvalue assignment by an output feedback is considered. Necessary and sufficient conditions for the existence of a solution are established. A procedure for the computation of the output-feedback gain matrix is given and illustrated with a numerical example.

Invariant factors assignment for a class of time-delay systems

Jean-Jacques Loiseau (2001)

Kybernetika

It is well–known that every system with commensurable delays can be assigned a finite spectrum by feedback, provided that it is spectrally controllable. In general, the feedback involves distributed delays, and it is defined in terms of a Volterra equation. In the case of multivariable time–delay systems, one would be interested in assigning not only the location of the poles of the closed–loop system, but also their multiplicities, or, equivalently, the invariant factors of the closed–loop system....

Linear adaptive structure for control of a nonlinear MIMO dynamic plant

Stanisław Bańka, Paweł Dworak, Krzysztof Jaroszewski (2013)

International Journal of Applied Mathematics and Computer Science

In the paper an adaptive linear control system structure with modal controllers for a MIMO nonlinear dynamic process is presented and various methods for synthesis of those controllers are analyzed. The problems under study are exemplified by the synthesis of a position and yaw angle control system for a drillship described by a 3DOF nonlinear mathematical model of low-frequency motions made by the drillship over the drilling point. In the proposed control system, use is made of a set of (stable)...

Currently displaying 21 – 40 of 71