Assumption evaluation in approximate modelling
The region of asymptotic null controllability of bilinear systems with control constraints is characterized using Lyapunov exponents. It is given by the cone over the region of attraction of the maximal control set in projective space containing zero in its spectral interval.
We describe precisely, under generic conditions, the contact of the accessibility set at time with an abnormal direction, first for a single-input affine control system with constraint on the control, and then as an application for a sub-riemannian system of rank 2. As a consequence we obtain in sub-riemannian geometry a new splitting-up of the sphere near an abnormal minimizer into two sectors, bordered by the first Pontryagin’s cone along , called the -sector and the -sector. Moreover we...
We describe precisely, under generic conditions, the contact of the accessibility set at time T with an abnormal direction, first for a single-input affine control system with constraint on the control, and then as an application for a sub-Riemannian system of rank 2. As a consequence we obtain in sub-Riemannian geometry a new splitting-up of the sphere near an abnormal minimizer γ into two sectors, bordered by the first Pontryagin's cone along γ, called the L∞-sector and the L2-sector. Moreover...
A nonlinear discrete-time control system forced by stochastic disturbances is considered. We study the problem of synthesis of the regulator which stabilizes an equilibrium of the deterministic system and provides required scattering of random states near this equilibrium for the corresponding stochastic system. Our approach is based on the stochastic sensitivity functions technique. The necessary and important part of the examined control problem is an analysis of attainability. For 2D systems,...