A method for computing quadratic Brunovsky forms.
This paper presents an adaptive Generalized Likelihood Ratio (GLR) test for multiple Faults Detection and Isolation (FDI) in stochastic linear dynamic systems. Based on the work of Willsky and Jones (1976), we propose a modified generalized likelihood ratio test, allowing detection, isolation and estimation of multiple sequential faults. Our contribution aims to maximise the good decision rate of fault detection using another updating strategy. This is based on a reference model updated on-line...
A model-based controller architecture for Fault-Tolerant Control (FTC) is presented in this paper. The controller architecture is based on a general controller parameterization. The FTC architecture consists of two main parts, a Fault Detection and Isolation (FDI) part and a controller reconfiguration part. The theoretical basis for the architecture is given followed by an investigation of the single parts in the architecture. It is shown that the general controller parameterization is central in...
The Linear Canonical Transform (LCT) is a four parameter class of integral transform which plays an important role in many fields of signal processing. Well-known transforms such as the Fourier Transform (FT), the FRactional Fourier Transform (FRFT), and the FreSnel Transform (FST) can be seen as special cases of the linear canonical transform. Many properties of the LCT are currently known but the extension of FRFTs and FTs still needs more attention. This paper presents a modified convolution...
A new modified state variable diagram method is proposed for determination of positive realizations of linear continuoustime systems with delays in state and input vectors. Using the method, it is possible to find a positive realization with reduced numbers of delays for a given transfer matrix. Sufficient conditions for the existence of positive realizations of given proper transfer matrices are established. The proposed method is demonstrated on numerical examples.
In this paper, a modified van der Pol equation is considered as a description of the heart action. This model has a number of interesting properties allowing reconstruction of phenomena observed in physiological experiments as well as in Holter electrocardiographic recordings. Our aim is to study periodic solutions of the modified van der Pol equation and take into consideration the influence of feedback and delay which occur in the normal heart action mode as well as in pathological modes. Usage...
Predictive control of MIMO processes is a challenging problem which requires the specification of a large number of tuning parameters (the prediction horizon, the control horizon and the cost weighting factor). In this context, the present paper compares two strategies to design a supervisor of the Multivariable Generalized Predictive Controller (MGPC), based on multiobjective optimization. Thus, the purpose of this work is the automatic adjustment of the MGPC synthesis by simultaneously minimizing...
Necessary and sufficient conditions for a discrete-time system to be stabilizable via static output feedback are established. The conditions include a Riccati equation. An iterative as well as non-iterative LMI based algorithm with guaranteed cost for the computation of output stabilizing feedback gains is proposed and introduces the novel LMI approach to compute the stabilizing output feedback gain matrix. The results provide the discrete- time counterpart to the results by Kučera and De Souza.
With a chaotic system being divided into linear and nonlinear parts, a new approach is presented to realize generalized chaos synchronization by using feedback control and parameter commutation. Based on a linear transformation, the problem of generalized synchronization (GS) is transformed into the stability problem of the synchronous error system, and an existence condition for GS is derived. Furthermore, the performance of GS can be improved according to the configuration of the GS velocity....
We consider the problem of internal regional controllability with output constraints. It consists in steering a hyperbolic system to a final state between two prescribed functions only on a subregion of the evolution system domain. This problem is solved by characterizing the optimal control in terms of a subdifferential associated with the minimized functional.
The use of generalized sampled-data hold functions, in order to synthesize adaptive pole placers for linear multiple-input, multiple-output systems with unknown parameters, is investigated in this paper, for the first time. Such a control scheme relies on a periodically varying controller, which suitably modulates the sampled outputs of the controlled plant. The proposed control strategy allows us to assign the poles of the sampled closed-loop system arbitrarily in desired locations, and does not...