Previous Page 3

Displaying 41 – 55 of 55

Showing per page

Forward invariant sets, homogeneity and small-time local controllability

Mikhail Krastanov (1995)

Banach Center Publications

The property of forward invariance of a subset of R n with respect to a differential inclusion is characterized by using the notion of a perpendicular to a set. The obtained results are applied for investigating the dependence of the small-time local controllability of a homogeneous control system on parameters.

Further results on robust fuzzy dynamic systems with LMI 𝓓-stability constraints

Wudhichai Assawinchaichote (2014)

International Journal of Applied Mathematics and Computer Science

This paper examines the problem of designing a robust fuzzy controller with -stability constraints for a class of nonlinear dynamic systems which is described by a Takagi-Sugeno (TS) fuzzy model. Fuzzy modelling is a multi-model approach in which simple sub-models are combined to determine the global behavior of the system. Based on a linear matrix inequality (LMI) approach, we develop a robust fuzzy controller that guarantees (i) the ₂-gain of the mapping from the exogenous input noise to the...

Further results on sliding manifold design and observation for a heat equation

Enrique Barbieri, Sergey Drakunov, J. Fernando Figueroa (2000)

Kybernetika

This article presents new extensions regarding a nonlinear control design framework that is suitable for a class of distributed parameter systems with uncertainties (DPS). The control objective is first formulated as a function of the distributed system state. Then, a control is sought such that the set in the state space where this relation is true forms an integral manifold reachable in finite time. The manifold is called a Sliding Manifold. The Sliding Mode controller implements a theoretically...

Fuzzy feedback linearizing controller and its equivalence with the fuzzy nonlinear internal model control structure

Reda Boukezzoula, Sylvie Galichet, Laurent Foulloy (2007)

International Journal of Applied Mathematics and Computer Science

This paper examines the inverse control problem of nonlinear systems with stable dynamics using a fuzzy modeling approach. Indeed, based on the ability of fuzzy systems to approximate any nonlinear mapping, the nonlinear system is represented by a Takagi-Sugeno (TS) fuzzy system, which is then inverted for designing a fuzzy controller. As an application of the proposed inverse control methodology, two popular control structures, namely, feedback linearization and Nonlinear Internal Model Control...

Fuzzy logic gain scheduling for non-linear servo tracking

Mieczysław Brdyś, Jonathan Littler (2002)

International Journal of Applied Mathematics and Computer Science

This paper proposes the use of gain scheduling as a method of controlling a servo system with hard non-linear elements. The servo controls two elements of a tracker mounted on a ship at sea. There is stiction at the zero velocity point and non-linear friction against the motion of each tracker axis. A dual feedback loop control structure is employed. Fuzzy logic is used to provide smoothly varying non-linear scheduling functions to map the velocity of the servo relevant to the deck of the ship onto...

Currently displaying 41 – 55 of 55

Previous Page 3