Displaying 161 – 180 of 204

Showing per page

On-line wavelet estimation of Hammerstein system nonlinearity

Przemysław Śliwiński (2010)

International Journal of Applied Mathematics and Computer Science

A new algorithm for nonparametric wavelet estimation of Hammerstein system nonlinearity is proposed. The algorithm works in the on-line regime (viz., past measurements are not available) and offers a convenient uniform routine for nonlinearity estimation at an arbitrary point and at any moment of the identification process. The pointwise convergence of the estimate to locally bounded nonlinearities and the rate of this convergence are both established.

Optimal approximation simulation and analog realization of the fundamental fractional order transfer function

Abdelbaki Djouambi, Abdelfatah Charef, Alina Voda besancon (2007)

International Journal of Applied Mathematics and Computer Science

This paper provides an optimal approximation of the fundamental linear fractional order transfer function using a distribution of the relaxation time function. Simple methods, useful in systems and control theories, which can be used to approximate the irrational transfer function of a class of fractional systems fora given frequency band by a rational function are presented. The optimal parameters of the approximated model are obtained by minimizing simultaneously the gain and the phase error between...

Optimal control for distributed systems subject to null-controllability. Application to discriminating sentinels

Ousseynou Nakoulima (2007)

ESAIM: Control, Optimisation and Calculus of Variations

We consider a distributed system in which the state q is governed by a parabolic equation and a pair of controls v = (h,k) where h and k play two different roles: the control k is of controllability type while h expresses that the state q does not move too far from a given state. Therefore, it is natural to introduce the control point of view. In fact, there are several ways to state and solve optimal control problems with a pair of controls h and k, in particular the Least Squares method...

Optimal control of linear stochastic evolution equations in Hilbert spaces and uniform observability

Viorica Mariela Ungureanu (2009)

Czechoslovak Mathematical Journal

In this paper we study the existence of the optimal (minimizing) control for a tracking problem, as well as a quadratic cost problem subject to linear stochastic evolution equations with unbounded coefficients in the drift. The backward differential Riccati equation (BDRE) associated with these problems (see [chen], for finite dimensional stochastic equations or [UC], for infinite dimensional equations with bounded coefficients) is in general different from the conventional BDRE (see [1990], [ukl])....

Optimal control processes associated with a class of discontinuous control systems: Applications to sliding mode dynamics

Arturo Enrique Gil García, Vadim Azhmyakov, Michael V. Basin (2014)

Kybernetika

This paper presents a theoretical approach to optimal control problems (OCPs) governed by a class of control systems with discontinuous right-hand sides. A possible application of the framework developed in this paper is constituted by the conventional sliding mode dynamic processes. The general theory of constrained OCPs is used as an analytic background for designing numerically tractable schemes and computational methods for their solutions. The proposed analytic method guarantees consistency...

Optimal control solution for Pennes' equation using strongly continuous semigroup

Alaeddin Malek, Ghasem Abbasi (2014)

Kybernetika

A distributed optimal control problem on and inside a homogeneous skin tissue is solved subject to Pennes' equation with Dirichlet boundary condition at one end and Rubin condition at the other end. The point heating power induced by conducting heating probe inserted at the tumour site as an unknown control function at specific depth inside biological body is preassigned. Corresponding pseudo-port Hamiltonian system is proposed. Moreover, it is proved that bioheat transfer equation forms a contraction...

Optimal decentralized control design with disturbance decoupling

Petros G. Voulgaris (2002)

Kybernetika

In this paper we present an input-output point of view for the problem of closed loop norm minimization of stable plants when a decentralized structure and a disturbance decoupling property are imposed on the controller. We show that this problem is convex and present approaches to its solution in the optimal 1 sense in the nontrivial case which is when the block off- diagonal terms of the plant have more columns than rows.

Optimal erasures in decision-feedback equalization for the Gaussian noise

Jerzy Kisilewicz, Arkadiusz Grzybowski (2006)

International Journal of Applied Mathematics and Computer Science

A new method of optimizing decision feedback parameters for intersymbol interference equalizers is described. The coefficient existing in the decision feedback loop depends on risk qualification of the received decision. We prove that bit error probability can be decreased with this method for any channel with a single interference sample and small Gaussian noise. Experimental results are presented for selected channels. The dependences of optimal feedback parameters on channel interference samples...

Currently displaying 161 – 180 of 204