Displaying 281 – 300 of 306

Showing per page

Unbounded viscosity solutions of hybrid control systems

Guy Barles, Sheetal Dharmatti, Mythily Ramaswamy (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We study a hybrid control system in which both discrete and continuous controls are involved. The discrete controls act on the system at a given set interface. The state of the system is changed discontinuously when the trajectory hits predefined sets, namely, an autonomous jump set A or a controlled jump set C where controller can choose to jump or not. At each jump, trajectory can move to a different Euclidean space. We allow the cost functionals to be unbounded with certain growth and hence...

Unifying approach to observer-filter design

Václav Černý (2009)

Kybernetika

The paper examines similarities between observer design as introduced in Automatic Control Theory and filter design as established in Signal Processing. It is shown in the paper that there are obvious connections between them in spite of different aims for their design. Therefore, it is prospective to make them be compatible from the structural point of view. Introduced error invariance and error convergence properties of both of them are unifying tools for their design. Lyapunov's stability theory,...

Variable structure observer design for a class of uncertain systems with a time-varying delay

Wen-Jeng Liu (2012)

International Journal of Applied Mathematics and Computer Science

Design of a state observer is an important issue in control systems and signal processing. It is well known that it is difficult to obtain the desired properties of state feedback control if some or all of the system states cannot be directly measured. Moreover, the existence of a lumped perturbation and/or a time delay usually reduces the system performance or even produces an instability in the closed-loop system. Therefore, in this paper, a new Variable Structure Observer (VSO) is proposed for...

Verified solution method for population epidemiology models with uncertainty

Joshua A. Enszer, Mark A. Stadtherr (2009)

International Journal of Applied Mathematics and Computer Science

Epidemiological models can be used to study the impact of an infection within a population. These models often involve parameters that are not known with certainty. Using a method for verified solution of nonlinear dynamic models, we can bound the disease trajectories that are possible for given bounds on the uncertain parameters. The method is based on the use of an interval Taylor series to represent dependence on time and the use of Taylor models to represent dependence on uncertain parameters...

Currently displaying 281 – 300 of 306