Global existence and uniform stabilization of a nonlinear Timoshenko beam.
We study the global approximate controllability of the one dimensional semilinear convection-diffusion-reaction equation governed in a bounded domain via the coefficient (bilinear control) in the additive reaction term. Clearly, even in the linear case, due to the maximum principle, such system is not globally or locally controllable in any reasonable linear space. It is also well known that for the superlinear terms admitting a power growth at infinity the global approximate controllability by...
We study the global approximate controllability of the one dimensional semilinear convection-diffusion-reaction equation governed in a bounded domain via the coefficient (bilinear control) in the additive reaction term. Clearly, even in the linear case, due to the maximum principle, such system is not globally or locally controllable in any reasonable linear space. It is also well known that for the superlinear terms admitting a power growth at infinity the global approximate controllability by...
The aim of this paper is to study regional gradient observability for a diffusion system and the reconstruction of the state gradient without the knowledge of the state. First, we give definitions and characterizations of these new concepts and establish necessary conditions for the sensor structure in order to obtain regional gradient observability. We also explore an approach which allows for a regional gradient reconstruction. The developed method is original and leads to a numerical algorithm...
We are concerned with the asymptotic analysis of optimal control problems for -D partial differential equations defined on a periodic planar graph, as the period of the graph tends to zero. We focus on optimal control problems for elliptic equations with distributed and boundary controls. Using approaches of the theory of homogenization we show that the original problem on the periodic graph tends to a standard linear quadratic optimal control problem for a two-dimensional homogenized system, and...
We are concerned with the asymptotic analysis of optimal control problems for 1-D partial differential equations defined on a periodic planar graph, as the period of the graph tends to zero. We focus on optimal control problems for elliptic equations with distributed and boundary controls. Using approaches of the theory of homogenization we show that the original problem on the periodic graph tends to a standard linear quadratic optimal control problem for a two-dimensional homogenized system,...
Let be a possibly unbounded positive operator on the Hilbert space , which is boundedly invertible. Let be a bounded operator from to another Hilbert space . We prove that the system of equations
Let A0 be a possibly unbounded positive operator on the Hilbert space H, which is boundedly invertible. Let C0 be a bounded operator from to another Hilbert space U. We prove that the system of equations
We study the identification of the nonlinearities A,(→)b and c appearing in the quasilinear parabolic equation y_t − div(A(y)∇y + (→)b(y)) + c(y) = u inΩ × (0,T), assuming that the solution of an associated boundary value problem is known at the terminal time, y(x,T), over a (probably small) subset of Ω, for each source term u. Our work can be divided into two parts. Firstly, the uniqueness of A,(→)b and c is proved under appropriate assumptions. Secondly, we consider a finite-dimensional optimization...
We study in an abstract setting the indirect stabilization of systems of two wave-like equations coupled by a localized zero order term. Only one of the two equations is directly damped. The main novelty in this paper is that the coupling operator is not assumed to be coercive in the underlying space. We show that the energy of smooth solutions of these systems decays polynomially at infinity, whereas it is known that exponential stability does not...
We study in an abstract setting the indirect stabilization of systems of two wave-like equations coupled by a localized zero order term. Only one of the two equations is directly damped. The main novelty in this paper is that the coupling operator is not assumed to be coercive in the underlying space. We show that the energy of smooth solutions of these systems decays polynomially at infinity, whereas it is known that exponential stability does not...
We study linear combinations of exponentials e^{iλ_nt} , λ_n ∈ Λ in the case where the distance between some points λ_n tends to zero. We suppose that the sequence Λ is a finite union of uniformly discrete sequences. In (Avdonin and Ivanov, 2001), necessary and sufficient conditions were given for the family of divided differences of exponentials to form a Riesz basis in space L^2 (0,T). Here we prove that if the upper uniform density of Λ is less than T/(2π), the family of divided differences can...
An exploratory study is performed to investigate the use of a time-dependent discrete adjoint methodology for design optimization of a high-lift wing configuration augmented with an active flow control system. The location and blowing parameters associated with a series of jet actuation orifices are used as design variables. In addition, a geometric parameterization scheme is developed to provide a compact set of design variables describing the wing...
This paper is divided into two parts and focuses on the linear independence of boundary traces of eigenfunctions of boundary value problems. Part I deals with second-order elliptic operators, and Part II with Stokes (and Oseen) operators. Part I: Let be an eigenvalue of a second-order elliptic operator defined on an open, sufficiently smooth, bounded domain Ω in ℝⁿ, with Neumann homogeneous boundary conditions on Γ = tial Ω. Let be the corresponding linearly independent (normalized) eigenfunctions...
We consider a 1-D tank containing an inviscid incompressible irrotational fluid. The tank is subject to the control which consists of horizontal moves. We assume that the motion of the fluid is well-described by the Saint–Venant equations (also called the shallow water equations). We prove the local controllability of this nonlinear control system around any steady state. As a corollary we get that one can move from any steady state to any other steady state.
We consider a 1-D tank containing an inviscid incompressible irrotational fluid. The tank is subject to the control which consists of horizontal moves. We assume that the motion of the fluid is well-described by the Saint–Venant equations (also called the shallow water equations). We prove the local controllability of this nonlinear control system around any steady state. As a corollary we get that one can move from any steady state to any other steady state.