Equivalence, invariance and dynamical system canonical modelling. II. Invariant properties of reachable models and associated transformations
This paper considers the consensus tracking problem for a class of leader-follower multi-agent systems via event-triggered observer-based control. In our set-up, only a subset of the followers can obtain some relative information on the leader. Assume that the leader's control input is unknown for the followers. In order to track such a leader, we design two novel event-triggered observer-based control strategies, one centralized and the other distributed. One can prove that under the proposed control...
In this paper, we revisit the structural concept of properness. We distinguish between the properness of the whole system, here called internal properness, and the properness of the “observable part” of the system. We give geometric characterizations for this last properness concept, namely external properness.
Combat planes are designed in a structured relaxed static stability to meet maneuver requirements. These planes are unstable in the longitudinal axis and require continuous active control systems with elevator control. Therefore, failures in the elevator can have vital consequences for flight safety. In this work, the performance of classical control approach against asymmetric elevator failures is investigated and it is shown that this approach is insufficient in the case of such a failure. Then,...
This paper mainly deals with the design of an advanced control law with an observer for a special class of nonlinear systems. We design an observer with a gain as a function of speed. We study the solution to the output feedback torque and rotor flux-tracking problem for an induction motor model given in the natural frame. We propose a new robust nonlinear observer and prove the global stability of the interlaced controller-observer system. The control algorithm is studied through simulations and...
This paper presents the role of vector relative degree in the formulation of stationarity conditions of optimal control problems for affine control systems. After translating the dynamics into a normal form, we study the Hamiltonian structure. Stationarity conditions are rewritten with a limited number of variables. The approach is demonstrated on two and three inputs systems, then, we prove a formal result in the general case. A mechanical system example serves as illustration.
This paper considers the minimization of the -induced norm of the closed loop in linear multirate systems when full state information is available for feedback. A state-space approach is taken and concepts of viability theory and controlled invariance are utilized. The essential idea is to construct a set such that the state may be confined to that set and that such a confinement guarantees that the output satisfies the desired output norm conditions. Once such a set is computed, it is shown that...
The leader-following consensus of multiple linear time invariant (LTI) systems under switching topology is considered. The leader-following consensus problem consists of designing for each agent a distributed protocol to make all agents track a leader vehicle, which has the same LTI dynamics as the agents. The interaction topology describing the information exchange of these agents is time-varying. An averaging method is proposed. Unlike the existing results in the literatures which assume the LTI...
In the paper an adaptive linear control system structure with modal controllers for a MIMO nonlinear dynamic process is presented and various methods for synthesis of those controllers are analyzed. The problems under study are exemplified by the synthesis of a position and yaw angle control system for a drillship described by a 3DOF nonlinear mathematical model of low-frequency motions made by the drillship over the drilling point. In the proposed control system, use is made of a set of (stable)...
In the case of linear dynamics, repetitive processes are a distinct class of 2D linear systems with uses in areas ranging from long-wall coal cutting and metal rolling operations to iterative learning control schemes. The main feature which makes them distinct from other classes of 2D linear systems is that information propagation in one of the two independent directions only occurs over a finite duration. This, in turn, means that a distinct systems theory must be developed for them for onward...