Displaying 81 – 100 of 177

Showing per page

Genetic algorithm based method of elimination of residual oscillation in mechatronic systems

Peter Hubinský, Ladislav Jurišica, Branislav Vranka (2005)

Kybernetika

The paper presents control signals generation methods, preventing the excitation of residual vibration in slightly damped oscillational systems. It is focused on the feedforward methods, as most of the vibrations in examined processes are induced by the control, while the influence of disturbances is mostly negligible. Application of these methods involves ensuring of the insensitivity to natural frequency change, which can be reached in classical approach only by considerable increase of transient...

Genetic and combinatorial algorithms for optimal sizing and placement of active power filters

Marcin Maciążek, Dariusz Grabowski, Marian Pasko (2015)

International Journal of Applied Mathematics and Computer Science

The paper deals with cost effective compensator placement and sizing. It becomes one of the most important problems in contemporary electrical networks, in which voltage and current waveform distortions increase year-by-year reaching or even exceeding limit values. The suppression of distortions could be carried out by means of three types of compensators, i.e., passive filters, active power filters and hybrid filters. So far, passive filters have been more popular mainly because of economic reasons,...

H control design for an adaptive optics system

Nikolaos Denis, Douglas Looze, Jim Huang, David Castañon (1999)

Kybernetika

In this paper we first present a full order H controller for a multi- input, multi-output (MIMO) adaptive optics system. We apply model reduction techniques to the full order H controller and demonstrate that the closed-loop (CL) system with the reduced order H controller achieves the same high level of performance. Upon closer examination of the structure of the reduced order H controller it is found that the dynamical behavior of the reduced order H controller can be accurately approximated by...

High-performance simulation-based algorithms for an alpine ski racer's trajectory optimization in heterogeneous computer systems

Roman Dębski (2014)

International Journal of Applied Mathematics and Computer Science

Effective, simulation-based trajectory optimization algorithms adapted to heterogeneous computers are studied with reference to the problem taken from alpine ski racing (the presented solution is probably the most general one published so far). The key idea behind these algorithms is to use a grid-based discretization scheme to transform the continuous optimization problem into a search problem over a specially constructed finite graph, and then to apply dynamic programming to find an approximation...

Imitation learning of car driving skills with decision trees and random forests

Paweł Cichosz, Łukasz Pawełczak (2014)

International Journal of Applied Mathematics and Computer Science

Machine learning is an appealing and useful approach to creating vehicle control algorithms, both for simulated and real vehicles. One common learning scenario that is often possible to apply is learning by imitation, in which the behavior of an exemplary driver provides training instances for a supervised learning algorithm. This article follows this approach in the domain of simulated car racing, using the TORCS simulator. In contrast to most prior work on imitation learning, a symbolic decision...

Linear repetitive process control theory applied to a physical example

Krzysztof Gałkowski, Eric Rogers, Wojciech Paszke, David Owens (2003)

International Journal of Applied Mathematics and Computer Science

In the case of linear dynamics, repetitive processes are a distinct class of 2D linear systems with uses in areas ranging from long-wall coal cutting and metal rolling operations to iterative learning control schemes. The main feature which makes them distinct from other classes of 2D linear systems is that information propagation in one of the two independent directions only occurs over a finite duration. This, in turn, means that a distinct systems theory must be developed for them for onward...

LPV design of fault-tolerant control for road vehicles

Péter Gáspár, Zoltán Szabó, József Bokor (2012)

International Journal of Applied Mathematics and Computer Science

The aim of the paper is to present a supervisory decentralized architecture for the design and development of reconfigurable and fault-tolerant control systems in road vehicles. The performance specifications are guaranteed by local controllers, while the coordination of these components is provided by a supervisor. Since the monitoring components and FDI filters provide the supervisor with information about the various vehicle maneuvers and the different fault operations, it is able to make decisions...

Mobile robot localization under stochastic communication protocol

Yanyang Lu, Bo Shen (2020)

Kybernetika

In this paper, the mobile robot localization problem is investigated under the stochastic communication protocol (SCP). In the mobile robot localization system, the measurement data including the distance and the azimuth are received by multiple sensors equipped on the robot. In order to relieve the network burden caused by network congestion, the SCP is introduced to schedule the transmission of the measurement data received by multiple sensors. The aim of this paper is to find a solution to the...

Model-based techniques for virtual sensing of longitudinal flight parameters

Georges Hardier, Cédric Seren, Pierre Ezerzere (2015)

International Journal of Applied Mathematics and Computer Science

Introduction of fly-by-wire and increasing levels of automation significantly improve the safety of civil aircraft, and result in advanced capabilities for detecting, protecting and optimizing A/C guidance and control. However, this higher complexity requires the availability of some key flight parameters to be extended. Hence, the monitoring and consolidation of those signals is a significant issue, usually achieved via many functionally redundant sensors to extend the way those parameters are...

Modeling and control of induction motors

Emmanuel Delaleau, Jean-Paul Louis, Romeo Ortega (2001)

International Journal of Applied Mathematics and Computer Science

This paper is devoted to the modeling and control of the induction motor. The well-established field oriented control is recalled and two recent control strategies are exposed, namely the passivity-based control and the flatness-based control.

Modeling of the temperature distribution of a greenhouse using finite element differential neural networks

Juan Carlos Bello-Robles, Ofelia Begovich, Javier Ruiz, Rita Quetziquel Fuentes-Aguilar (2018)

Kybernetika

Most of the existing works in the literature related to greenhouse modeling treat the temperature within a greenhouse as homogeneous. However, experimental data show that there exists a temperature spatial distribution within a greenhouse, and this gradient can produce different negative effects on the crop. Thus, the modeling of this distribution will allow to study the influence of particular climate conditions on the crop and to propose new temperature control schemes that take into account the...

Currently displaying 81 – 100 of 177