Page 1 Next

Displaying 1 – 20 of 140

Showing per page

Random projection RBF nets for multidimensional density estimation

Ewa Skubalska-Rafajłowicz (2008)

International Journal of Applied Mathematics and Computer Science

The dimensionality and the amount of data that need to be processed when intensive data streams are observed grow rapidly together with the development of sensors arrays, CCD and CMOS cameras and other devices. The aim of this paper is to propose an approach to dimensionality reduction as a first stage of training RBF nets. As a vehicle for presenting the ideas, the problem of estimating multivariate probability densities is chosen. The linear projection method is briefly surveyed. Using random...

Random projections and hotelling's T² statistics for change detection in high-dimensional data streams

Ewa Skubalska-Rafajłowicz (2013)

International Journal of Applied Mathematics and Computer Science

The method of change (or anomaly) detection in high-dimensional discrete-time processes using a multivariate Hotelling chart is presented. We use normal random projections as a method of dimensionality reduction. We indicate diagnostic properties of the Hotelling control chart applied to data projected onto a random subspace of Rn . We examine the random projection method using artificial noisy image sequences as examples.

Rational algebra and MM functions

Ray A. Cuninghame-Green (2003)

Kybernetika

MM functions, formed by finite composition of the operators min, max and translation, represent discrete-event systems involving disjunction, conjunction and delay. The paper shows how they may be formulated as homogeneous rational algebraic functions of degree one, over (max, +) algebra, and reviews the properties of such homogeneous functions, illustrated by some orbit-stability problems.

Rational semimodules over the max-plus semiring and geometric approach to discrete event systems

Stéphane Gaubert, Ricardo Katz (2004)

Kybernetika

We introduce rational semimodules over semirings whose addition is idempotent, like the max-plus semiring, in order to extend the geometric approach of linear control to discrete event systems. We say that a subsemimodule of the free semimodule 𝒮 n over a semiring 𝒮 is rational if it has a generating family that is a rational subset of 𝒮 n , 𝒮 n being thought of as a monoid under the entrywise product. We show that for various semirings of max-plus type whose elements are integers, rational semimodules...

Reachability and observability of linear systems over max-plus

Michael J. Gazarik, Edward W. Kamen (1999)

Kybernetika

This paper discusses the properties of reachability and observability for linear systems over the max-plus algebra. Working in the event-domain, the concept of asticity is used to develop conditions for weak reachability and weak observability. In the reachability problem, residuation is used to determine if a state is reachable and to generate the required control sequence to reach it. In the observability problem, residuation is used to estimate the state. Finally, as in the continuous-variable...

Reachability of cone fractional continuous-time linear systems

Tadeusz Kaczorek (2009)

International Journal of Applied Mathematics and Computer Science

A new class of cone fractional continuous-time linear systems is introduced. Necessary and sufficient conditions for a fractional linear system to be a cone fractional one are established. Sufficient conditions for the reachability of cone fractional systems are given. The discussion is illustrated with an example of linear cone fractional systems.

Reaching phase elimination in variable structure control of the third order system with state constraints

Andrzej Bartoszewicz, A. Nowacka (2006)

Kybernetika

In this paper the design of a time varying switching plane for the sliding mode control of the third order system subject to the velocity and acceleration constraints is considered. Initially the plane passes through the system representative point in the error state space and then it moves with a constant velocity to the origin of the space. Having reached the origin the plane stops and remains motionless. The plane parameters (determining angles of inclination and the velocity of its motion) are...

Realizability of precompensators in linear multivariable systems: A structural approach

Javier Ruiz, Eduardo Castañeda (2014)

Kybernetika

In this work, given a linear multivariable system, the problem of static state feedback realization of dynamic compensators is considered. Necessary and sufficient conditions for the existence of a static state feedback that realizes the dynamic compensator (square or full column rank compensator) are stated in structural terms, i. e., in terms of the zero-pole structure of the compensator, and the eigenvalues and the row image of the controllability matrix of the compensated system. Based on these...

Realization of multivariable nonlinear systems via the approaches of differential forms and differential algebra

Jiangfeng Zhang, Claude H. Moog, Xiao Hua Xia (2010)

Kybernetika

In this paper differential forms and differential algebra are applied to give a new definition of realization for multivariable nonlinear systems consistent with the linear realization theory. Criteria for the existence of realization and the definition of minimal realization are presented. The relations of minimal realization and accessibility and finally the computation of realizations are also discussed in this paper.

Realization of nonlinear input-output equations in controller canonical form

Arvo Kaldmäe, Ülle Kotta (2018)

Kybernetika

In this paper necessary and sufficient conditions are given which guarantee that there exists a realization of a set of nonlinear higher order differential input-output equations in the controller canonical form. Two cases are studied, corresponding respectively to linear and nonlinear output functions. The conditions are formulated in terms of certain sequence of vector spaces of differential 1-forms. The proofs suggest how to construct the transformations, necessary to obtain the specific state...

Realization problem for a class of positive continuous-time systems with delays

Tadeusz Kaczorek (2005)

International Journal of Applied Mathematics and Computer Science

The realization problem for a class of positive, continuous-time linear SISO systems with one delay is formulated and solved. Sufficient conditions for the existence of positive realizations of a given proper transfer function are established. A procedure for the computation of positive minimal realizations is presented and illustrated by an example.

Currently displaying 1 – 20 of 140

Page 1 Next