Displaying 21 – 40 of 140

Showing per page

Realization problem for positive multivariable discretetime linear systems with delays in the state vector and inputs

Tadeusz Kaczorek (2006)

International Journal of Applied Mathematics and Computer Science

The realization problem for positive multivariable discrete-time systems with delays in the state and inputs is formulated and solved. Conditions for its solvability and the existence of a minimal positive realization are established. A procedure for the computation of a positive realization of a proper rational matrix is presented and illustrated with examples.

Realization theory for linear and bilinear switched systems: A formal power series approach

Mihály Petreczky (2011)

ESAIM: Control, Optimisation and Calculus of Variations

The paper represents the first part of a series of papers on realization theory of switched systems. Part I presents realization theory of linear switched systems, Part II presents realization theory of bilinear switched systems. More precisely, in Part I necessary and sufficient conditions are formulated for a family of input-output maps to be realizable by a linear switched system and a characterization of minimal realizations is presented. The paper treats two types of switched systems. The...

Realization theory for linear and bilinear switched systems: A formal power series approach

Mihály Petreczky (2011)

ESAIM: Control, Optimisation and Calculus of Variations

This paper is the second part of a series of papers dealing with realization theory of switched systems. The current Part II addresses realization theory of bilinear switched systems. In Part I [Petreczky, ESAIM: COCV, DOI: 10.1051/cocv/2010014] we presented realization theory of linear switched systems. More precisely, in Part II we present necessary and sufficient conditions for a family of input-output maps to be realizable by a bilinear switched system, together with a characterization of minimal...

Realization theory for linear and bilinear switched systems: A formal power series approach

Mihály Petreczky (2011)

ESAIM: Control, Optimisation and Calculus of Variations

This paper is the second part of a series of papers dealing with realization theory of switched systems. The current Part II addresses realization theory of bilinear switched systems. In Part I [Petreczky, ESAIM: COCV, DOI: 10.1051/cocv/2010014] we presented realization theory of linear switched systems. More precisely, in Part II we present necessary and sufficient conditions for a family of input-output maps to be realizable by a bilinear switched system, together with a characterization of minimal...

Realization theory for linear and bilinear switched systems: A formal power series approach

Mihály Petreczky (2011)

ESAIM: Control, Optimisation and Calculus of Variations

The paper represents the first part of a series of papers on realization theory of switched systems. Part I presents realization theory of linear switched systems, Part II presents realization theory of bilinear switched systems. More precisely, in Part I necessary and sufficient conditions are formulated for a family of input-output maps to be realizable by a linear switched system and a characterization of minimal realizations is presented. The paper treats two types of switched systems. The...

Realization theory methods for the stability investigation of nonlinear infinite-dimensional input-output systems

Volker Reitmann (2011)

Mathematica Bohemica

Realization theory for linear input-output operators and frequency-domain methods for the solvability of Riccati operator equations are used for the stability and instability investigation of a class of nonlinear Volterra integral equations in a Hilbert space. The key idea is to consider, similar to the Volterra equation, a time-invariant control system generated by an abstract ODE in a weighted Sobolev space, which has the same stability properties as the Volterra equation.

Receding horizon optimal control for infinite dimensional systems

Kazufumi Ito, Karl Kunisch (2002)

ESAIM: Control, Optimisation and Calculus of Variations

The receding horizon control strategy for dynamical systems posed in infinite dimensional spaces is analysed. Its stabilising property is verified provided control Lyapunov functionals are used as terminal penalty functions. For closed loop dissipative systems the terminal penalty can be chosen as quadratic functional. Applications to the Navier–Stokes equations, semilinear wave equations and reaction diffusion systems are given.

Receding horizon optimal control for infinite dimensional systems

Kazufumi Ito, Karl Kunisch (2010)

ESAIM: Control, Optimisation and Calculus of Variations

The receding horizon control strategy for dynamical systems posed in infinite dimensional spaces is analysed. Its stabilising property is verified provided control Lyapunov functionals are used as terminal penalty functions. For closed loop dissipative systems the terminal penalty can be chosen as quadratic functional. Applications to the Navier–Stokes equations, semilinear wave equations and reaction diffusion systems are given.

Receding-horizon control of constrained uncertain linear systems with disturbances

Luigi Chisci, Paola Falugi, Giovanni Zappa (2002)

Kybernetika

The paper addresses receding-horizon (predictive) control for polytopic discrete-time systems subject to input/state constraints and unknown but bounded disturbances. The objective is to optimize nominal performance while guaranteeing robust stability and constraint satisfaction. The latter goal is achieved by exploiting robust invariant sets under linear and nonlinear control laws. Tradeoffs between maximizing the initial feasibility region and guaranteeing ultimate boundedness in the smallest...

Reconfigurability analysis for reliable fault-tolerant control design

Ahmed Khelassi, Didier Theilliol, Philippe Weber (2011)

International Journal of Applied Mathematics and Computer Science

In this paper the integration of reliability evaluation in reconfigurability analysis of a fault-tolerant control system is considered. The aim of this work is to contribute to reliable fault-tolerant control design. The admissibility of control reconfigurability is analyzed with respect to reliability requirements. This analysis shows the relationship between reliability and control reconfigurability defined generally through Gramian controllability. An admissible solution for reconfigurability...

Recursive identification algorithm for dynamic systems with output backlash and its convergence

Ruili Dong, Qingyuan Tan, Yonghong Tan (2009)

International Journal of Applied Mathematics and Computer Science

This paper proposes a recursive identification method for systems with output backlash that can be described by a pseudoWiener model. In this method, a novel description of the nonlinear part of the system, i.e., backlash, is developed. In this case, the nonlinear system is decomposed into a piecewise linearized model. Then, a modified recursive general identification algorithm (MRGIA) is employed to estimate the parameters of the proposed model. Furthermore, the convergence of the MRGIA for the...

Recursive identification of Wiener systems

Włodzimierz Greblicki (2001)

International Journal of Applied Mathematics and Computer Science

A Wiener system, i.e. a cascade system consisting of a linear dynamic subsystem and a nonlinear memoryless subsystem is identified. The a priori information is nonparametric, i.e. neither the functional form of the nonlinear characteristic nor the order of the dynamic part are known. Both the input signal and the disturbance are Gaussian white random processes. Recursive algorithms to estimate the nonlinear characteristic are proposed and their convergence is shown. Results of numerical simulation...

Reduced order controllers for Burgers' equation with a nonlinear observer

Jeanne Atwell, Jeffrey Borggaard, Belinda King (2001)

International Journal of Applied Mathematics and Computer Science

A method for reducing controllers for systems described by partial differential equations (PDEs) is applied to Burgers' equation with periodic boundary conditions. This approach differs from the typical approach of reducing the model and then designing the controller, and has developed over the past several years into its current form. In earlier work it was shown that functional gains for the feedback control law served well as a dataset for reduced order basis generation via the proper orthogonal...

Reduction and transfer equivalence of nonlinear control systems: Unification and extension via pseudo-linear algebra

Ülle Kotta, Palle Kotta, Miroslav Halás (2010)

Kybernetika

The paper applies the pseudo-linear algebra to unify the results on reducibility, reduction and transfer equivalence for continuous- and discrete-time nonlinear control systems. The necessary and sufficient condition for reducibility of nonlinear input-output equation is presented in terms of the greatest common left factor of two polynomials describing the behaviour of the ‘tangent linearized system’ equation. The procedure is given to find the reduced (irreducible) system equation that is transfer...

Refinement of a fuzzy control rule set.

Antonio González, Raúl Pérez (1998)

Mathware and Soft Computing

Fuzzy logic controller performance depends on the fuzzy control rule set. This set can be obtained either by an expert or from a learning algorithm through a set of examples. Recently, we have developed SLAVE an inductive learning algorithm capable of identifying fuzzy systems. The refinement of the rules proposed by SLAVE (or by an expert) can be very important in order to improve the accuracy of the model and in order to simplify the description of the system. The refinement algorithm is based...

Currently displaying 21 – 40 of 140