Page 1 Next

Displaying 1 – 20 of 241

Showing per page

Safe consensus control of cooperative-competitive multi-agent systems via differential privacy

Jiayue Ma, Jiangping Hu (2022)

Kybernetika

This paper investigates a safe consensus problem for cooperative-competitive multi-agent systems using a differential privacy (DP) approach. Considering that the agents simultaneously interact cooperatively and competitively, we propose a novel DP bipartite consensus algorithm, which guarantees that the DP strategy only works on competitive pairs of agents. We then prove that the proposed algorithm can achieve the mean square bipartite consensus and ( p , r ) -accuracy. Furthermore, a differential privacy...

Safety regulations and fuzzy-logic control to nuclear reactors.

Da Ruan (2000)

Mathware and Soft Computing

We present an R&D project on fuzzy-logic control applicatios tor the Belgian Nuclear Reactor 1 (BR1) at the Belgian Nuclear Research Centre (SCK·CEN). The project started in 1995 and aimed at investigating the added value of fuzzy logic control for nuclear reactors. We first review some relevant literature on fuzzy logic control in nuclear reactors, then present the state-of-the-art of the BR1 project, with an understanding of the safety requirements for this real fuzzy-logic control application...

Sampled weighted attraction control of distributed thermal scan welding

Charalabos C. Doumanidis (1999)

Kybernetika

This article addresses the problem of distributed-parameter control for a class of infinite-dimensional manufacturing processes with scanned thermal actuation, such as scan welding. This new process is implemented on a robotic GTAW laboratory setup with infrared pyrometry, and simulated by a flexible numerical computation program. An analytical linearized model, based on convolution of Green’s fields, is expressed in multivariable state-space form, with its time-variant parameters identified in-process....

Scope and generalization of the theory of linearly constrained linear regulator

Paolo Alessandro, Elena de Santis (1999)

Kybernetika

A previous paper by the same authors presented a general theory solving (finite horizon) feasibility and optimization problems for linear dynamic discrete-time systems with polyhedral constraints. We derived necessary and sufficient conditions for the existence of solutions without assuming any restrictive hypothesis. For the solvable cases we also provided the inequative feedback dynamic system, that generates by forward recursion all and nothing but the feasible (or optimal, according to the cases)...

Selected multicriteria shortest path problems: an analysis of complexity, models and adaptation of standard algorithms

Zbigniew Tarapata (2007)

International Journal of Applied Mathematics and Computer Science

The paper presents selected multicriteria (multiobjective) approaches to shortest path problems. A classification of multi-objective shortest path (MOSP) problems is given. Different models of MOSP problems are discussed in detail. Methods of solving the formulated optimization problems are presented. An analysis of the complexity of the presented methods and ways of adapting of classical algorithms for solving multiobjective shortest path problems are described. A comparison of the effectiveness...

Self-bounded controlled invariant subspaces in measurable signal decoupling with stability: minimal-order feedforward solution

Elena Zattoni (2005)

Kybernetika

The structural properties of self-bounded controlled invariant subspaces are fundamental to the synthesis of a dynamic feedforward compensator achieving insensitivity of the controlled output to a disturbance input accessible for measurement, on the assumption that the system is stable or pre-stabilized by an inner feedback. The control system herein devised has several important features: i) minimum order of the feedforward compensator; ii) minimum number of unassignable dynamics internal to the...

Self-replication processes in nanosystems of informatics

Stefan Węgrzyn, Ryszard Winiarczyk, Lech Znamirowski (2003)

International Journal of Applied Mathematics and Computer Science

Recent research on the nanotechnological processes of molecular products and object synthesis as well as research on the nanosystems of informatics, stimulates the development of technical systems of informatics. Until now, they have been used mainly for computational tasks when, similarly to biological organisms, they allowed the development of self-replicating products and complete objects. One can focus here on the model of a circulation of materials, information and energy in a biological cell,...

Self-tuning controllers based on orthonormal functions

Jozef Hejdiš, Štefan Kozák, Ľubica Juráčková (2000)

Kybernetika

Problems of the system identification using orthonormal functions are discussed and algorithms of computing parameters of the discrete time state- space model of the plant based on the generalized orthonormal functions and the Laguerre functions are derived. The adaptive LQ regulator and the predictive controller based on the Laguerre function model are also presented. The stability and the robustness of the closed loop using the predictive controller are investigated.

Sensitivity examination of the simulation result of discrete event dynamic systems with perturbation analysis.

Tamas Koltai, Juan Carlos Larrañeta, Luis Onieva, Sebastián Lozano (1994)

Qüestiió

Simulation completed with perturbation analysis provides a new approach for the optimal control of queuing network type systems. The objective of this paper is to calculate the sensitivity range of finite zero-order perturbation, that is, to determine the maximum and minimum size of perturbation within which zero-order propagation rules can be applied. By the introduction of the concept of virtual queue and first and second level no-input and full-output matrices, an algorithm is provided which...

Sensor network design for the estimation of spatially distributed processes

Dariusz Uciński, Maciej Patan (2010)

International Journal of Applied Mathematics and Computer Science

In a typical moving contaminating source identification problem, after some type of biological or chemical contamination has occurred, there is a developing cloud of dangerous or toxic material. In order to detect and localize the contamination source, a sensor network can be used. Up to now, however, approaches aiming at guaranteeing a dense region coverage or satisfactory network connectivity have dominated this line of research and abstracted away from the mathematical description of the physical...

Currently displaying 1 – 20 of 241

Page 1 Next