Displaying 21 – 40 of 241

Showing per page

Sensor network scheduling for identification of spatially distributed processes

Dariusz Uciński (2012)

International Journal of Applied Mathematics and Computer Science

The work treats the problem of fault detection for processes described by partial differential equations as that of maximizing the power of a parametric hypothesis test which checks whether or not system parameters have nominal values. A simple node activation strategy is discussed for the design of a sensor network deployed in a spatial domain that is supposed to be used while detecting changes in the underlying parameters which govern the process evolution. The setting considered relates to a...

Sensors and boundary state reconstruction of hyperbolic systems

El Hassan Zerrik, Hamid Bourray, Samir Ben Hadid (2010)

International Journal of Applied Mathematics and Computer Science

This paper deals with the problem of regional observability of hyperbolic systems in the case where the subregion of interest is a boundary part of the system evolution domain. We give a definition and establish characterizations in connection with the sensor structure. Then we show that it is possible to reconstruct the system state on a subregion of the boundary. The developed approach, based on the Hilbert uniqueness method (Lions, 1988), leads to a reconstruction algorithm. The obtained results...

Separation principle for nonlinear systems: a bilinear approach

Mohamed Hammami, Hamadi Jerbi (2001)

International Journal of Applied Mathematics and Computer Science

In this paper we investigate the local stabilizability of single-input nonlinear affine systems by means of an estimated state feedback law given by a bilinear observer. The associated bilinear approximating system is assumed to be observable for any input and stabilizable by a homogeneous feedback law of degree zero. Furthermore, we discuss the case of planar systems which admit bad inputs (i.e. the ones that make bilinear systems unobservable). A separation principle for such systems is given.

Set membership estimation of parameters and variables in dynamic networks by recursive algorithms with a moving measurement window

Kazimierz Duzinkiewicz (2006)

International Journal of Applied Mathematics and Computer Science

The paper considers a set membership joint estimation of variables and parameters in complex dynamic networks based on parametric uncertain models and limited hard measurements. A recursive estimation algorithm with a moving measurement window is derived that is suitable for on-line network monitoring. The window allows stabilising the classic recursive estimation algorithm and significantly improves estimate tightness. The estimator is validated on a case study regarding a water distribution network....

Set-valued and fuzzy stochastic integral equations driven by semimartingales under Osgood condition

Marek T. Malinowski (2015)

Open Mathematics

We analyze the set-valued stochastic integral equations driven by continuous semimartingales and prove the existence and uniqueness of solutions to such equations in the framework of the hyperspace of nonempty, bounded, convex and closed subsets of the Hilbert space L2 (consisting of square integrable random vectors). The coefficients of the equations are assumed to satisfy the Osgood type condition that is a generalization of the Lipschitz condition. Continuous dependence of solutions with respect...

Set-valued stochastic integrals and stochastic inclusions in a plane

Władysław Sosulski (2001)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

We present the concepts of set-valued stochastic integrals in a plane and prove the existence of a solution to stochastic integral inclusions of the form z s , t φ s , t + 0 s 0 t F u , v ( z u , v ) d u d v + 0 s 0 t G u , v ( z u , v ) d w u , v

Set-valued Stratonovich integral

Anna Góralczyk, Jerzy Motyl (2006)

Discussiones Mathematicae Probability and Statistics

The purpose of the paper is to introduce a set-valued Stratonovich integral driven by a one-dimensional Brownian motion. We discuss the existence of this integral and investigate its properties.

Shape optimization for a time-dependent model of a carousel press in glass production

Petr Salač, Jan Stebel (2019)

Applications of Mathematics

This contribution presents the shape optimization problem of the plunger cooling cavity for the time dependent model of pressing the glass products. The system of the mould, the glass piece, the plunger and the plunger cavity is considered in four consecutive time intervals during which the plunger moves between 6 glass moulds. The state problem is represented by the steady-state Navier-Stokes equations in the cavity and the doubly periodic energy equation in the whole system, under the assumption...

Shape optimization of piezoelectric sensors or actuators for the control of plates

Emmanuel Degryse, Stéphane Mottelet (2005)

ESAIM: Control, Optimisation and Calculus of Variations

This paper deals with a new method to control flexible structures by designing non-collocated sensors and actuators satisfying a pseudo-collocation criterion in the low-frequency domain. This technique is applied to a simply supported plate with a point force actuator and a piezoelectric sensor, for which we give some theoretical and numerical results. We also compute low-order controllers which stabilize pseudo-collocated systems and the closed-loop behavior show that this approach is very promising....

Shape optimization of piezoelectric sensors or actuators for the control of plates

Emmanuel Degryse, Stéphane Mottelet (2010)

ESAIM: Control, Optimisation and Calculus of Variations

This paper deals with a new method to control flexible structures by designing non-collocated sensors and actuators satisfying a pseudo-collocation criterion in the low-frequency domain. This technique is applied to a simply supported plate with a point force actuator and a piezoelectric sensor, for which we give some theoretical and numerical results. We also compute low-order controllers which stabilize pseudo-collocated systems and the closed-loop behavior show that this approach is very promising. ...

Sharp regularity of the second time derivative w_tt of solutions to Kirchhoff equations with clamped Boundary Conditions

Irena Lasiecka, Roberto Triggiani (2001)

International Journal of Applied Mathematics and Computer Science

We consider mixed problems for Kirchhoff elastic and thermoelastic systems, subject to boundary control in the clamped Boundary Conditions B.C. (“clamped control”). If w denotes elastic displacement and θ temperature, we establish optimal regularity of {w, w_t, w_tt} in the elastic case, and of {w, w_t, w_tt, θ} in the thermoelastic case. Our results complement those presented in (Lagnese and Lions, 1988), where sharp (optimal) trace regularity results are obtained for the corresponding boundary...

Significance tests to identify regulated proteins based on a large number of small samples

Frank Klawonn (2012)

Kybernetika

Modern biology is interested in better understanding mechanisms within cells. For this purpose, products of cells like metabolites, peptides, proteins or mRNA are measured and compared under different conditions, for instance healthy cells vs. infected cells. Such experiments usually yield regulation or expression values – the abundance or absence of a cell product in one condition compared to another one – for a large number of cell products, but with only a few replicates. In order to distinguish...

Similarity in fuzzy reasoning.

Frank Klawonn, Juan Luis Castro (1995)

Mathware and Soft Computing

Fuzzy set theory is based on a `fuzzification' of the predicate in (element of), the concept of membership degrees is considered as fundamental. In this paper we elucidate the connection between indistinguishability modelled by fuzzy equivalence relations and fuzzy sets. We show that the indistinguishability inherent to fuzzy sets can be computed and that this indistinguishability cannot be overcome in approximate reasoning. For our investigations we generalize from the unit interval as the basis...

Similarity transformation of matrices to one common canonical form and its applications to 2D linear systems

Tadeusz Kaczorek (2010)

International Journal of Applied Mathematics and Computer Science

The notion of a common canonical form for a sequence of square matrices is introduced. Necessary and sufficient conditions for the existence of a similarity transformation reducing the sequence of matrices to the common canonical form are established. It is shown that (i) using a suitable state vector linear transformation it is possible to decompose a linear 2D system into two linear 2D subsystems such that the dynamics of the second subsystem are independent of those of the first one, (ii) the...

Simple conditions for practical stability of positive fractional discrete-time linear systems

Mikołaj Busłowicz, Tadeusz Kaczorek (2009)

International Journal of Applied Mathematics and Computer Science

In the paper the problem of practical stability of linear positive discrete-time systems of fractional order is addressed. New simple necessary and sufficient conditions for practical stability and for practical stability independent of the length of practical implementation are established. It is shown that practical stability of the system is equivalent to asymptotic stability of the corresponding standard positive discrete-time systems of the same order. The discussion is illustrated with numerical...

Currently displaying 21 – 40 of 241