Tracking control of a flexible beam by nonlinear boundary feedback.
In this work, an alternative solution to the tracking problem for a SISO nonlinear dynamical system exhibiting points of singularity is given. An inversion-based controller is synthesized using the Fliess generalized observability canonical form associated to the system. This form depends on the input and its derivatives. For this purpose, a robust exact differentiator is used for estimating the control derivatives signals with the aim of defining a control law depending on such control derivative...
Universal tracking control is investigated in the context of a class of -input, -output dynamical systems modelled by functional differential equations. The class encompasses a wide variety of nonlinear and infinite-dimensional systems and contains – as a prototype subclass – all finite-dimensional linear single-input single-output minimum-phase systems with positive high-frequency gain. The control objective is to ensure that, for an arbitrary -valued reference signal of class (absolutely...
Universal tracking control is investigated in the context of a class S of M-input, M-output dynamical systems modelled by functional differential equations. The class encompasses a wide variety of nonlinear and infinite-dimensional systems and contains – as a prototype subclass – all finite-dimensional linear single-input single-output minimum-phase systems with positive high-frequency gain. The control objective is to ensure that, for an arbitrary -valued reference signal r of class W1,∞ (absolutely...
The reference trajectory tracking problem is considered in this paper and (constructive) sufficient conditions are given for the existence of a causal state feedback solution. The main result is introduced as a byproduct of input-output feedback linearization.
The article is devoted to a motion control problem for a differentially driven mobile robot in the task of trajectory tracking in the presence of skid-slip effects. The kinematic control concept presented in the paper is the Vector Field Orientation (VFO) feedback approach with a nonlinear feed-forward skid-slip influence compensation scheme. The VFO control law guarantees asymptotic convergence of the position tracking error to zero in spite of the disturbing influence of skid-slip phenomena. The...
A theoretically attractive and computationally fast algorithm is presented for the determination of the coefficients of the determinantal polynomial and the coefficients of the adjoint polynomial matrix of a given three-dimensional (3–D) state space model of Fornasini–Marchesini type. The algorithm uses the discrete Fourier transform (DFT) and can be easily implemented on a digital computer.
Equivalence of several feedback and/or feedforward compensation schemes in linear systems is investigated. The classes of compensators that are realizable using static or dynamic, state or output feedback are characterized. Stability of the compensated system is studied. Applications to model matching are included.
Necessary and sufficient conditions are given for the existence of state and output transformations, that bring single-input single-output nonlinear state equations into the observer form. The conditions are formulated in terms of differential one-forms, associated with an input-output equation of the system. An algorithm for transformation of the state equations into the observer form is presented and illustrated by an example.
An interesting analogy can be found between recognition of noisy, distorted, or incomplete structural patterns and analysis, modelling and control of actual discrete event systems, where different types of uncertainty can occur.
This paper presents a new robust adaptive model predictive control for a special class of continuous-time non-linear systems with uncertainty. These systems have bounded disturbances with unknown upper bound, as well as constraints on input states. An adaptive control is used in the new controller to estimate the system uncertainty. Also, to avoid the system disturbances, a method is employed to find the appropriate gain in Tube-MPC. Finally, a surge avoidance problem in centrifugal compressors...
A trajectory tracking problem for the three-dimensional kinematic model of a unicycle-type mobile robot is considered. It is assumed that only two of the tracking error coordinates are measurable. By means of cascaded systems theory we develop observers for each of the error coordinates and show the K-exponential convergence of the tracking error in combined closed-loop observer-controller systems. The results are illustrated with computer simulations.
In this paper, we are interested in the study of bifurcation solutions of nonlinear wave equation of elastic beams located on elastic foundations with small perturbation by using local method of Lyapunov-Schmidt.We showed that the bifurcation equation corresponding to the elastic beams equation is given by the nonlinear system of two equations. Also, we found the parameters equation of the Discriminant set of the specified problem as well as the bifurcation diagram.
We study an -dimensional system of ordinary differential equations with a constant matrix, a relay-type nonlinearity, and an external disturbance in the right-hand side. We consider a nonideal relay characteristic. The external disturbance is described by the product of an exponential function and a sine function with an initial phase as a parameter. We assume the matrix of the linear part and the vector at the relay characteristic such that, by a nonsingular transformation, the system is reduced...