Displaying 481 – 500 of 2294

Showing per page

Control of networks of Euler-Bernoulli beams

Bertrand Dekoninck, Serge Nicaise (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We consider the exact controllability problem by boundary action of hyperbolic systems of networks of Euler-Bernoulli beams. Using the multiplier method and Ingham's inequality, we give sufficient conditions insuring the exact controllability for all time. These conditions are related to the spectral behaviour of the associated operator and are sufficiently concrete in order to be able to check them on particular networks as illustrated on simple examples.

Control of the continuity equation with a non local flow

Rinaldo M. Colombo, Michael Herty, Magali Mercier (2011)

ESAIM: Control, Optimisation and Calculus of Variations

This paper focuses on the analytical properties of the solutions to the continuity equation with non local flow. Our driving examples are a supply chain model and an equation for the description of pedestrian flows. To this aim, we prove the well posedness of weak entropy solutions in a class of equations comprising these models. Then, under further regularity conditions, we prove the differentiability of solutions with respect to the initial datum and characterize this derivative. A necessary ...

Control of the continuity equation with a non local flow

Rinaldo M. Colombo, Michael Herty, Magali Mercier (2011)

ESAIM: Control, Optimisation and Calculus of Variations

This paper focuses on the analytical properties of the solutions to the continuity equation with non local flow. Our driving examples are a supply chain model and an equation for the description of pedestrian flows. To this aim, we prove the well posedness of weak entropy solutions in a class of equations comprising these models. Then, under further regularity conditions, we prove the differentiability of solutions with respect to the initial datum and characterize this derivative. A necessary ...

Control of the surface of a fluid by a wavemaker

Lionel Rosier (2004)

ESAIM: Control, Optimisation and Calculus of Variations

The control of the surface of water in a long canal by means of a wavemaker is investigated. The fluid motion is governed by the Korteweg-de Vries equation in lagrangian coordinates. The null controllability of the elevation of the fluid surface is obtained thanks to a Carleman estimate and some weighted inequalities. The global uncontrollability is also established.

Control of the surface of a fluid by a wavemaker

Lionel Rosier (2010)

ESAIM: Control, Optimisation and Calculus of Variations

The control of the surface of water in a long canal by means of a wavemaker is investigated. The fluid motion is governed by the Korteweg-de Vries equation in Lagrangian coordinates. The null controllability of the elevation of the fluid surface is obtained thanks to a Carleman estimate and some weighted inequalities. The global uncontrollability is also established.

Control of the underactuated mechanical systems using natural motion

Zdeněk Neusser, Michael Valášek (2012)

Kybernetika

The paper deals with the control of underactuated mechanical systems between equilibrium positions across the singular positions. The considered mechanical systems are in the gravity field. The goal is to find feasible trajectory connecting the equilibrium positions that can be the basis of the system control. Such trajectory can be stabilized around both equilibrium positions and due to the gravity forces the mechanical system overcomes the singular positions. This altogether constitutes the control...

Control of the wave equation by time-dependent coefficient

Antonin Chambolle, Fadil Santosa (2002)

ESAIM: Control, Optimisation and Calculus of Variations

We study an initial boundary-value problem for a wave equation with time-dependent sound speed. In the control problem, we wish to determine a sound-speed function which damps the vibration of the system. We consider the case where the sound speed can take on only two values, and propose a simple control law. We show that if the number of modes in the vibration is finite, and none of the eigenfrequencies are repeated, the proposed control law does lead to energy decay. We illustrate the rich behavior...

Control of the Wave Equation by Time-Dependent Coefficient

Antonin Chambolle, Fadil Santosa (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We study an initial boundary-value problem for a wave equation with time-dependent sound speed. In the control problem, we wish to determine a sound-speed function which damps the vibration of the system. We consider the case where the sound speed can take on only two values, and propose a simple control law. We show that if the number of modes in the vibration is finite, and none of the eigenfrequencies are repeated, the proposed control law does lead to energy decay. We illustrate the rich behavior of...

Control of transonic shock positions

Olivier Pironneau (2002)

ESAIM: Control, Optimisation and Calculus of Variations

We wish to show how the shock position in a nozzle could be controlled. Optimal control theory and algorithm is applied to the transonic equation. The difficulty is that the derivative with respect to the shock position involves a Dirac mass. The one dimensional case is solved, the two dimensional one is analyzed .

Control of Transonic Shock Positions

Olivier Pironneau (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We wish to show how the shock position in a nozzle could be controlled. Optimal control theory and algorithm is applied to the transonic equation. The difficulty is that the derivative with respect to the shock position involves a Dirac mass. The one dimensional case is solved, the two dimensional one is analyzed .

Control structure in optimization problems of bar systems

Leszek Mikulski (2004)

International Journal of Applied Mathematics and Computer Science

Optimal design problems in mechanics can be mathematically formulated as optimal control tasks. The minimum principle is employed in solving such problems. This principle allows us to write down optimal design problems as Multipoint Boundary Value Problems (MPBVPs). The dimension of MPBVPs is an essential restriction that decides on numerical difficulties. Optimal control theory does not give much information about the control structure, i.e., about the sequence of the forms of the right-hand sides...

Control structures

Robert Bryant, Robert Gardner (1995)

Banach Center Publications

We define an extension of the classical notion of a control system which we call a control structure. This is a geometric structure which can be defined on manifolds whose underlying topology is more complicated than that of a domain in n . Every control structure turns out to be locally representable as a classical control system, but our extension has the advantage that it has various naturality properties which the (classical) coordinate formulation does not, including the existence of so-called...

Currently displaying 481 – 500 of 2294