On periodic orbits in discrete-time cascade systems.
In this paper, two robust consensus problems are considered for a multi-agent system with various disturbances. To achieve the robust consensus, two distributed control schemes for each agent, described by a second-order differential equation, are proposed. With the help of graph theory, the robust consensus stability of the multi-agent system with communication delays is obtained for both fixed and switching interconnection topologies. The results show the leaderless consensus can be achieved with...
This paper focuses on the problem of uniform asymptotic stability of a class of linear neutral systems including some constant delays and time-varying cone-bounded nonlinearities. Sufficient stability conditions are derived by taking into account the weighting factors describing the nonlinearities. The proposed results are applied to the stability analysis of a class of lossless transmission line models.
We analyse multivalued stochastic differential equations driven by semimartingales. Such equations are understood as the corresponding multivalued stochastic integral equations. Under suitable conditions, it is shown that the considered multivalued stochastic differential equation admits at least one solution. Then we prove that the set of all solutions is closed and bounded.
The geometric control properties of vehicles with active suspensions are analyzed. A special attention is devoted to the problem of disturbance decoupling. Active suspensions of advanced vehicles allow the active rejection of external disturbances exerted on the sprung mass of the vehicle and caused by road surface irregularity. We focus on the road irregularity disturbances with the purpose of isolating the chassis from vibrations transmitted through suspensions. The paper is aimed at the synthesis...
This note proposes a quite general mathematical proposition which can be a starting point to prove many well-known results encountered while studying the theory of linear systems through matrix inequalities, including the S-procedure, the projection lemma and few others. Moreover, the problem of robustness with respect to several parameter uncertainties is revisited owing to this new theorem, leading to LMI (Linear Matrix Inequality)-based conditions for robust stability or performance analysis...
A problem of inner convex approximation of a stability domain for continuous-time linear systems is addressed in the paper. A constructive procedure for generating stable cones in the polynomial coefficient space is explained. The main idea is based on a construction of so-called Routh stable line segments (half-lines) starting from a given stable point. These lines (Routh rays) represent edges of the corresponding Routh subcones that form (possibly after truncation) a polyhedral (truncated) Routh...
In this paper, a modified version of the Chaos Shift Keying (CSK) scheme for secure encryption and decryption of data will be discussed. The classical CSK method determines the correct value of binary signal through checking which initially unsynchronized system is getting synchronized. On the contrary, the new anti-synchronization CSK (ACSK) scheme determines the wrong value of binary signal through checking which already synchronized system is loosing synchronization. The ACSK scheme is implemented...
In applying control (or feedback) theory to (mechanic) Lagrangian systems, so far forces have been generally used as values of the control . However these values are those of a Lagrangian co-ordinate in various interesting problems with a scalar control , where this control is carried out physically by adding some frictionless constraints. This pushed the author to consider a typical Lagrangian system , referred to a system of Lagrangian co-ordinates, and to try and write some handy conditions,...
This paper is a proceedings version of the ongoing work [20], and has been the object of the talk of the second author at Journées EDP in 2012.In this work we investigate optimal observability properties for wave and Schrödinger equations considered in a bounded open set , with Dirichlet boundary conditions. The observation is done on a subset of Lebesgue measure , where is fixed. We denote by the class of all possible such subsets. Let . We consider first the benchmark problem of maximizing...