Robust impedance control of a piezoelectric stage under thermal and external load disturbances
In this paper, a robust fault-tolerant control strategy for constrained multisensor linear systems, subject to sensor faults and in the presence of bounded state and output disturbances, is proposed. The scheme verifies that, for each sensors-estimator combination, suitable residual variables lie inside pre-computed sets and selects a more appropriate combination based on a chosen criterion. An active fault tolerant output feedback controller yields an MPC-based control law and, by means of the...
In this paper, a robust neural network control scheme for the switching dynamical model of the robotic manipulators has been addressed. Radial basis function (RBF) neural networks are employed to approximate unknown functions of robotic manipulators and a compensation controller is designed to enhance system robustness. The weight update law of the robotic manipulator is based on switched multiple Lyapunov function method and the periodically switching law which is suitable for practical implementation...
This paper is concerned with actuator fault detection in nonlinear systems in the presence of disturbances. A nonlinear unknown input observer is designed and the output estimation error is used as a residual for fault detection. To deal with the problem of high Lipschitz constants, a modified mean-value theorem is used to express the nonlinear error dynamics as a convex combination of known matrices with time-varying coefficients. Moreover, the disturbance attenuation is performed using a modified...
This paper is concerned with observer design for nonlinear systems that are modeled by T-S fuzzy systems containing parametric and nonparametric uncertainties. Unlike most Sugeno models, the proposed method contains nonlinear functions in the consequent part of the fuzzy IF-THEN rules. This will allow modeling a wider class of systems with smaller modeling errors. The consequent part of each rule contains a linear part plus a nonlinear term, which has an incremental quadratic constraint. This constraint...
This paper deals with the robust stabilization of a class of nonlinear switched systems with non-vanishing bounded perturbations. The nonlinearities in the systems satisfy a quasi-Lipschitz condition. An observer-based linear-type switching controller with quantized and sampled output signal is considered. Using a dwell-time approach and an extended version of the invariant ellipsoid method (IEM) sufficient conditions for stability in a practical sense are derived. These conditions are represented...
This paper investigates the problem of observer-based finite-time control for the uncertain discrete-time systems with nonlinear perturbations and time-varying delay. The Luenberger observer is designed to measure the system state. The observer-based controller is constructed. By constructing an appropriated Lyapunov-.Krasovskii functional, sufficient conditions are derived to ensure the resulting closed-loop system is finite-time bounded via observer-based control. The observer-based controller...
This paper presents a novel robust optimal control approach for attitude stabilization of a flexible spacecraft in the presence of external disturbances. An optimal control law is formulated by using concepts of inverse optimal control, proportional-integral-derivative control and a control Lyapunov function. A modified extended state observer is used to compensate for the total disturbances. High-gain and second order sliding mode algorithms are merged to obtain the proposed modified extended state...
Considerable safety benefits are achieved by robustly decoupling the lateral and yaw motions of a car with active steering. Robust unilateral decoupling requires an actuator to generate an additional front wheel steering angle. However, introducing actuators to closed loop systems may cause limit cycles due to actuator saturation and rate limits. Such limit cycles are intolerable w.r.t. safety and comfort. By introducing a simple nonlinear modification of the control law, this paper proposes a remedy...
In the paper the design of an aircraft motion controller based on the Dynamic Contraction Method is presented. The control task is formulated as a tracking problem for Euler angles, where the desired decoupled output transients are accomplished under assumption of high-level, high-frequency sensor noise and incomplete information about varying parameters of the system and external disturbances. The resulting controller has a simple form of a combination of a low-order linear dynamical system and...
A solution for fault tolerant control (FTC) of a quadrotor unmanned aerial vehicle (UAV) is proposed. It relies on model reference-based control, where a reference model generates the desired trajectory. Depending on the type of reference model used for generating the reference trajectory, and on the assumptions about the availability and uncertainty of fault estimation, different error models are obtained. These error models are suitable for passive FTC, active FTC and hybrid FTC, the latter being...
In this paper, a robust sampled-data observer is proposed for Lipschitz nonlinear systems. Under the minimum-phase condition, it is shown that there always exists a sampling period such that the estimation errors converge to zero for whatever large Lipschitz constant. The optimal sampling period can also be achieved by solving an optimal problem based on linear matrix inequalities (LMIs). The design methods are extended to Lipschitz nonlinear systems with large external disturbances as well. In...
This paper addresses the design of a state estimation and sensor fault detection, isolation and fault estimation observer for descriptor-linear parameter varying (D-LPV) systems. In contrast to where the scheduling functions depend on some measurable time varying state, the proposed method considers the scheduling function depending on an unmeasurable state vector. In order to isolate, detect and estimate sensor faults, an augmented system is constructed by considering faults to be auxiliary state...