Some variants of fault-finding procedures
In this paper we discuss two closely related problems arising in environmental monitoring. The first is the source localization problem linked to the question How can one find an unknown "contamination source"? The second is an associated sensor placement problem: Where should we place sensors that are capable of providing the necessary "adequate data" for that? Our approach is based on some concepts and ideas developed in mathematical control theory of partial differential equations.
In this paper we show how to find convenient boundary actuators, termed boundary efficient actuators, ensuring finite-time space compensation of any boundary disturbance. This is the so-called remediability problem. Then we study the relationship between this remediability notion and controllability by boundary actuators, and hence the relationship between boundary strategic and boundary efficient actuators. We also determine the set of boundary remediable disturbances, and for a boundary disturbance,...
There exist many examples of closed kinematical chains which have a freedom of motion, but there are very few systematical results in this direction. This paper is devoted to the systematical treatment of 4-parametric closed kinematical chains and we show that the so called Bennet’s mechanism is essentially the only 4-parametric closed kinematical chain which has the freedom of motion. According to [3] this question is connected with the problem of existence of asymptotic geodesic lines on robot-manipulators...
The problem of boundary stabilization for the isotropic linear elastodynamic system and the wave equation with Ventcel's conditions are considered (see [12]). The boundary observability and the exact controllability were etablished in [11]. We prove here the enegy decay to zero for the elastodynamic system with stationary Ventcel's conditions by introducing a nonlinear boundary feedback. We also give a boundary feedback leading to arbitrarily large energy decay rates for the elastodynamic system...
On s'intéresse dans cet article, a la stabilisation de l'équation des ondes dans un domaine extérieur avec condition de Dirichlet...
Dans ce travail, nous étudions une équation des poutres d’Euler-Bernoulli, on contrôle par combinaison linéaire de vitesse et vitesse de rotation appliquées à l’une des extrémités du système. Tout d’abord nous montrons que le problème est bien posé et qu’il y a stabilité uniforme sous certaines conditions portant sur les coefficients de feedback. Puis nous estimons le taux optimal de décroissance de l’énergie du système par la méthode de Shkalikov.
This paper focuses on the problem of constraint control for a class of discrete-time nonlinear systems. Firstly, a new discrete T-S fuzzy hyperbolic model is proposed to represent a class of discrete-time nonlinear systems. By means of the parallel distributed compensation (PDC) method, a novel asymptotic stabilizing control law with the “soft” constraint property is designed. The main advantage is that the proposed control method may achieve a small control amplitude. Secondly, for an uncertain...
In this paper we consider a linear system subject to norm bounded, bounded rate time-varying uncertainties. Necessary and sufficient conditions for quadratic stability and stabilizability of such class of uncertain systems are well known in the literature. Quadratic stability guarantees exponential stability in presence of arbitrary time-varying uncertainties; therefore it becomes a conservative approach when, as it is the case considered in this paper, the uncertainties are slowly-varying in time....
This paper considers a three-dimensional energy demand-supply system which typically demonstrates the relationship between the amount of energy supply and that of energy demand for the two regions in China. A delayed feedback controller is proposed to stabilize the system which was originally unstable even under some other controllers. The stability properties of the equilibrium points are subsequently analyzed and it is found that the Hopf bifurcation appears under some conditions. By using the...
In order to better understand the dynamics of acute leukemia, and in particular to find theoretical conditions for the efficient delivery of drugs in acute myeloblastic leukemia, we investigate stability of a system modeling its cell dynamics. The overall system is a cascade connection of sub-systems consisting of distributed delays and static nonlinear feedbacks. Earlier results on local asymptotic stability are improved by the analysis of the linearized...
This paper is devoted to studying the globally exponential stability of impulsive high-order Hopfield-type neural networks with time-varying delays. In the process of impulsive effect, nonlinear and delayed factors are simultaneously considered. A new impulsive differential inequality is derived based on the Lyapunov-Razumikhin method and some novel stability criteria are then given. These conditions, ensuring the global exponential stability, are simpler and less conservative than some of the previous...