Previous Page 4

Displaying 61 – 68 of 68

Showing per page

Cryptographic Primitives with Quasigroup Transformations

Mileva, Aleksandra (2010)

Mathematica Balkanica New Series

AMS Subj. Classification: Primary 20N05, Secondary 94A60The intention of this research is to justify deployment of quasigroups in cryptography, especially with new quasigroup based cryptographic hash function NaSHA as a runner in the First round of the ongoing NIST SHA-3 competition. We present new method for fast generation of huge quasigroup operations, based on the so-called extended Feistel networks and modification of the Sade’s diagonal method. We give new design of quasigroup based family of...

Cryptography based on number fields with large regulator

Johannes Buchmann, Markus Maurer, Bodo Möller (2000)

Journal de théorie des nombres de Bordeaux

We explain a variant of the Fiat-Shamir identification and signature protocol that is based on the intractability of computing generators of principal ideals in algebraic number fields. We also show how to use the Cohen-Lenstra-Martinet heuristics for class groups to construct number fields in which computing generators of principal ideals is intractable.

Curvature in image and shape processing

Yonathan Aflalo, Anastasia Dubrovina, Ron Kimmel, Aaron Wetzler (2013)

Actes des rencontres du CIRM

The laplacian operator applied to the coordinates of a manifold provides the mean curvature vector. Manipulating the metric of the manifold or interpreting its coordinates in various ways provide useful tools for shape and image processing and representation. We will review some of these tools focusing on scale invariant geometry, curvature flow with respect to an embedding of the image manifold in a high dimensional space, and object segmentation by active contours defined via the shape laplacian...

Curve cuspless reconstruction via sub-riemannian geometry

Ugo Boscain, Remco Duits, Francesco Rossi, Yuri Sachkov (2014)

ESAIM: Control, Optimisation and Calculus of Variations

We consider the problem of minimizing 0 ξ 2 + K 2 ( s ) d s ∫ 0 ℓ ξ 2 + K 2 ( s )   d s for a planar curve having fixed initial and final positions and directions. The total lengthℓ is free. Here s is the arclength parameter, K(s) is the curvature of the curve and ξ > 0 is a fixed constant. This problem comes from a model of geometry of vision due to Petitot, Citti and Sarti. We study existence of local and global minimizers for this problem. We prove that if for a certain choice of boundary conditions there...

Currently displaying 61 – 68 of 68

Previous Page 4