The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
John Wallis publie entre 1669 et 1671 les trois parties de son traité de Mécanique, qu’il caractérise lui-même comme un traité de géométrie. La mécanique est située à l’intérieur de la géométrie, dont elle partage les méthodes, puisque les propriétés du mouvement sont démontrées more geometrico. Wallis veut fonder la mécanique sur de nouvelles bases. Pour cela, il y applique une méthode qu’il a élaborée dans l’Arithmetica infinitorum, en partant de la méthode des indivisibles de Cavalieri, et qu’il...
Lorsque vers 1654 Pascal considère le triangle arithmétique, il ne se contente pas de dresser l’inventaire d’applications déjà anciennes, ni d’étendre son usage aux jeux de hasard. Son recueil de traités est aussi le lieu où se confrontent deux manières successives de résoudre les mêmes problèmes : soit par lecture du triangle, soit par des calculs dont le triangle est exclu.Or, du point de vue de la preuve, le recueil donne à voir ces solutions sans triangle comme un second mouvement, une conclusion....
There has never been any doubt as to the importance of the logarithm, a mathematical relation whose usefulness has persisted in different aspects to the present day. Within years of their introduction, logarithms became indispensable for mathematicians, astronomers, navigators, and geographers alike. The question of their origins, however, is more contentious. At least two scholars, the Scottish nobleman John Napier and the Swiss craftsman Jost Bürgi, simultaneously and independently produced proposals...
Currently displaying 41 –
60 of
76