Displaying 81 – 100 of 376

Showing per page

Choice-Perfect Graphs

Zsolt Tuza (2013)

Discussiones Mathematicae Graph Theory

Given a graph G = (V,E) and a set Lv of admissible colors for each vertex v ∈ V (termed the list at v), a list coloring of G is a (proper) vertex coloring ϕ : V → S v2V Lv such that ϕ(v) ∈ Lv for all v ∈ V and ϕ(u) 6= ϕ(v) for all uv ∈ E. If such a ϕ exists, G is said to be list colorable. The choice number of G is the smallest natural number k for which G is list colorable whenever each list contains at least k colors. In this note we initiate the study of graphs in which the choice number equals...

Clique graph representations of ptolemaic graphs

Terry A. Mckee (2010)

Discussiones Mathematicae Graph Theory

A graph is ptolemaic if and only if it is both chordal and distance-hereditary. Thus, a ptolemaic graph G has two kinds of intersection graph representations: one from being chordal, and the other from being distance-hereditary. The first of these, called a clique tree representation, is easily generated from the clique graph of G (the intersection graph of the maximal complete subgraphs of G). The second intersection graph representation can also be generated from the clique graph, as a very special...

Colouring graphs with prescribed induced cycle lengths

Bert Randerath, Ingo Schiermeyer (2001)

Discussiones Mathematicae Graph Theory

In this paper we study the chromatic number of graphs with two prescribed induced cycle lengths. It is due to Sumner that triangle-free and P₅-free or triangle-free, P₆-free and C₆-free graphs are 3-colourable. A canonical extension of these graph classes is I ( 4 , 5 ) , the class of all graphs whose induced cycle lengths are 4 or 5. Our main result states that all graphs of I ( 4 , 5 ) are 3-colourable. Moreover, we present polynomial time algorithms to 3-colour all triangle-free graphs G of this kind, i.e., we have...

Cores and shells of graphs

Allan Bickle (2013)

Mathematica Bohemica

The k -core of a graph G , C k ( G ) , is the maximal induced subgraph H G such that δ ( G ) k , if it exists. For k > 0 , the k -shell of a graph G is the subgraph of G induced by the edges contained in the k -core and not contained in the ( k + 1 ) -core. The core number of a vertex is the largest value for k such that v C k ( G ) , and the maximum core number of a graph, C ^ ( G ) , is the maximum of the core numbers of the vertices of G . A graph G is k -monocore if C ^ ( G ) = δ ( G ) = k . This paper discusses some basic results on the structure of k -cores and k -shells....

Countable splitting graphs

Nick Haverkamp (2011)

Fundamenta Mathematicae

A graph is called splitting if there is a 0-1 labelling of its vertices such that for every infinite set C of natural numbers there is a sequence of labels along a 1-way infinite path in the graph whose restriction to C is not eventually constant. We characterize the countable splitting graphs as those containing a subgraph of one of three simple types.

Criteria for of the existence of uniquely partitionable graphs with respect to additive induced-hereditary properties

Izak Broere, Jozef Bucko, Peter Mihók (2002)

Discussiones Mathematicae Graph Theory

Let ₁,₂,...,ₙ be graph properties, a graph G is said to be uniquely (₁,₂, ...,ₙ)-partitionable if there is exactly one (unordered) partition V₁,V₂,...,Vₙ of V(G) such that G [ V i ] i for i = 1,2,...,n. We prove that for additive and induced-hereditary properties uniquely (₁,₂,...,ₙ)-partitionable graphs exist if and only if i and j are either coprime or equal irreducible properties of graphs for every i ≠ j, i,j ∈ 1,2,...,n.

Criticality of Switching Classes of Reversible 2-Structures Labeled by an Abelian Group

Houmem Belkhechine, Pierre Ille, Robert E. Woodrow (2017)

Discussiones Mathematicae Graph Theory

Let V be a finite vertex set and let (, +) be a finite abelian group. An -labeled and reversible 2-structure defined on V is a function g : (V × V) (v, v) : v ∈ V → such that for distinct u, v ∈ V, g(u, v) = −g(v, u). The set of -labeled and reversible 2-structures defined on V is denoted by ℒ(V, ). Given g ∈ ℒ(V, ), a subset X of V is a clan of g if for any x, y ∈ X and v ∈ V X, g(x, v) = g(y, v). For example, ∅, V and v (for v ∈ V) are clans of g, called trivial. An element g of ℒ(V, ) is primitive...

Decomposition tree and indecomposable coverings

Andrew Breiner, Jitender Deogun, Pierre Ille (2011)

Discussiones Mathematicae Graph Theory

Let G = (V,A) be a directed graph. With any subset X of V is associated the directed subgraph G[X] = (X,A ∩ (X×X)) of G induced by X. A subset X of V is an interval of G provided that for a,b ∈ X and x ∈ V∖X, (a,x) ∈ A if and only if (b,x) ∈ A, and similarly for (x,a) and (x,b). For example ∅, V, and {x}, where x ∈ V, are intervals of G which are the trivial intervals. A directed graph is indecomposable if all its intervals are trivial. Given an integer k > 0, a directed graph G = (V,A) is called...

Degree Sequences of Monocore Graphs

Allan Bickle (2014)

Discussiones Mathematicae Graph Theory

A k-monocore graph is a graph which has its minimum degree and degeneracy both equal to k. Integer sequences that can be the degree sequence of some k-monocore graph are characterized as follows. A nonincreasing sequence of integers d0, . . . , dn is the degree sequence of some k-monocore graph G, 0 ≤ k ≤ n − 1, if and only if k ≤ di ≤ min {n − 1, k + n − i} and ⨊di = 2m, where m satisfies [...] ≤ m ≤ k ・ n − [...] .

Currently displaying 81 – 100 of 376