Displaying 421 – 440 of 694

Showing per page

Pretentiousness in analytic number theory

Andrew Granville (2009)

Journal de Théorie des Nombres de Bordeaux

In this report, prepared specially for the program of the XXVième Journées Arithmétiques, we describe how, in joint work with K. Soundararajan and Antal Balog, we have developed the notion of “pretentiousness” to help us better understand several key questions in analytic number theory.

Primality test for numbers of the form ( 2 p ) 2 n + 1

Yingpu Deng, Dandan Huang (2015)

Acta Arithmetica

We describe a primality test for M = ( 2 p ) 2 n + 1 with an odd prime p and a positive integer n, which are a particular type of generalized Fermat numbers. We also present special primality criteria for all odd prime numbers p not exceeding 19. All these primality tests run in deterministic polynomial time in the input size log₂M. A special 2pth power reciprocity law is used to deduce our result.

Prime constellations in triangles with binomial coefficient congruences

Larry Ericksen (2009)

Acta Mathematica Universitatis Ostraviensis

The primality of numbers, or of a number constellation, will be determined from residue solutions in the simultaneous congruence equations for binomial coefficients found in Pascal’s triangle. A prime constellation is a set of integers containing all prime numbers. By analyzing these congruences, we can verify the primality of any number. We present different arrangements of binomial coefficient elements for Pascal’s triangle, such as by the row shift method of Mann and Shanks and especially by...

Prime divisors of linear recurrences and Artin's primitive root conjecture for number fields

Hans Roskam (2001)

Journal de théorie des nombres de Bordeaux

Let S be a linear integer recurrent sequence of order k 3 , and define P S as the set of primes that divide at least one term of S . We give a heuristic approach to the problem whether P S has a natural density, and prove that part of our heuristics is correct. Under the assumption of a generalization of Artin’s primitive root conjecture, we find that P S has positive lower density for “generic” sequences S . Some numerical examples are included.

Prime divisors of the Lagarias sequence

Pieter Moree, Peter Stevenhagen (2001)

Journal de théorie des nombres de Bordeaux

We solve a 1985 challenge problem posed by Lagarias [5] by determining, under GRH, the density of the set of prime numbers that occur as divisor of some term of the sequence x n n = 1 defined by the linear recurrence x n + 1 = x n + x n - 1 and the initial values x 0 = 3 and x 1 = 1 . This is the first example of a ænon-torsionÆ second order recurrent sequence with irreducible recurrence relation for which we can determine the associated density of prime divisors.

Prime Factorization of Sums and Differences of Two Like Powers

Rafał Ziobro (2016)

Formalized Mathematics

Representation of a non zero integer as a signed product of primes is unique similarly to its representations in various types of positional notations [4], [3]. The study focuses on counting the prime factors of integers in the form of sums or differences of two equal powers (thus being represented by 1 and a series of zeroes in respective digital bases). Although the introduced theorems are not particularly important, they provide a couple of shortcuts useful for integer factorization, which could...

Prime factors of class number of cyclotomic fields

Tetsuya Taniguchi (2008)

Journal de Théorie des Nombres de Bordeaux

Let p be an odd prime, r be a primitive root modulo p and r i r i ( mod p ) with 1 r i p - 1 . In 2007, R. Queme raised the question whether the -rank ( an odd prime p ) of the ideal class group of the p -th cyclotomic field is equal to the degree of the greatest common divisor over the finite field 𝔽 of x ( p - 1 ) / 2 + 1 and Kummer’s polynomial f ( x ) = i = 0 p - 2 r - i x i . In this paper, we shall give the complete answer for this question enumerating a counter-example.

Currently displaying 421 – 440 of 694