Displaying 641 – 660 of 694

Showing per page

Propriétés arithmétiques des substitutions et automates infinis

Christian Mauduit (2006)

Annales de l’institut Fourier

L’objet de ce travail est d’étudier les propriétés arithmétiques et statistiques des mots infinis et des suites de nombres entiers engendrés par des substitutions sur un alphabet infini ou par des automates déterministes ayant un nombre infini dénombrable d’états. En particulier, nous montrons que si u est une suite de nombres entiers engendrée par un automate dont le graphe étiqueté associé représente une marche aléatoire de moyenne nulle sur un réseau de d ( d entier positif), alors la suite ( n α ) n u ...

Propriétés arithmétiques et dynamiques du fractal de Rauzy

Ali Messaoudi (1998)

Journal de théorie des nombres de Bordeaux

Dans ce travail, nous construisons explicitement deux isomorphismes métriques partout continus. L’un entre le système dynamique symbolique associé à la substitution σ : 0 01 , 1 02 , 2 0 et une rotation sur le tore 𝕋 2 ; l’autre, entre le système adique stationnaire [33] associé à la matrice de la substitution et la même rotation. Pour cela, nous étudions les propriétés arithmétiques de la frontière d’un ensemble compact de appelé “fractal de Rauzy”. Les constructions se généralisent aux substitutions de la forme σ k : 0 01 , 1 02 , k - 1 0 k , k 0 ...

Propriétés combinatoires, ergodiques et arithmétiques de la substitution de Tribonacci

Nataliya Chekhova, Pascal Hubert, Ali Messaoudi (2001)

Journal de théorie des nombres de Bordeaux

Nous étudions certaines propriétés combinatoires, ergodiques et arithmétiques du point fixe de la substitution de Tribonacci (introduite par G. Rauzy) et de la rotation du tore 𝕋 2 qui lui est associée. Nous établissons une généralisation géométrique du théorème des trois distances et donnons une formule explicite pour la fonction de récurrence du point fixe. Nous donnons des propriétés d’approximation diophantienne du vecteur de la rotation de 𝕋 2 : nous montrons, que pour une norme adaptée, la suite...

Propriétés combinatoires et prolongement analytique effectif de polyzêtas de Hurwitz et de leurs homologues

Jean-Yves Enjalbert, Hoang Ngoc Minh (2011)

Journal de Théorie des Nombres de Bordeaux

Dans ce travail nous nous intéressons à l’étude d’une famille de séries paramétrées de Dirichlet qui englobe les polyzêtas colorés d’une part et les polyzêtas de Hurwitz d’autre part. Cette famille de fonctions vérifie deux relations de mélange ; nous mentionnons aussi des relations quasi-périodiques et des relations de translation de variables. Nous donnons un codage en terme d’intégrales itérées des séries étudiées, qui conduit à leur représentation intégrale. Celle-ci permet d’en effectuer un...

Propriétés d'invariance des mots sturmiens

Bruno Parvaix (1997)

Journal de théorie des nombres de Bordeaux

Un mot sturmien est un mot infini, binaire, équilibré et non ultimement périodique. On détermine l’évolution de la pente et de l’intercept d’un mot sturmien, sous l’action du monoïde de Sturm. À l’aide des matrices de Raney, on énonce une condition que doivent satisfaire les pentes des mots laissés fixes par une substitution non triviale. Puis on prouve que cette condition est suffisante pour un ensemble particulier de mots dont l’intercept est une homographie de la pente.

Propriétés du groupe tannakien des structures de Hodge p -adiques et torseur entre cohomologies cristalline et étale

Jean-Pierre Wintenberger (1997)

Annales de l'institut Fourier

On donne des propriétés de la catégorie tannakienne des modules de Dieudonné filtrés sur un corps p -adique (ces modules de Dieudonné jouent en p -adique un rôle analogue aux structures de Hodge complexes). On prouve l’existence d’un foncteur fibre sur Q p et la simple connexité du groupe associé. Ceci permet de montrer, sous la conjecture de Fontaine : “faiblement admissible entraîne admissible”, une conjecture de Rapoport et Zink décrivant le torseur entre cohomologie cristalline et étale, et de prouver...

Propriétés locales et globales de certaines extensions métacycliques

Jean Cougnard (1982)

Annales de l'institut Fourier

Soit N / Q une extension galoisienne à groupe de Galois métacyclique G d’ordre n p a ( n divisant p - 1 et a 1 ) possédant un sous-groupe distingué d’ordre p a . On note N 1 l’unique sous-corps de N de degré n p a - 1 sur Q , O N (resp. O N 1 ) le clôture intégrale de Z dans N (resp. N 1 ) et v l’opérateur trace dans l’extension N / N 1 . On démontre que O N / O N 1 est un module localement libre sur l’anneau A = Z [ G ] / v . On montre ensuite que l’idéal engendré par les résolvantes de Fröhlich associées à un caractère fidèle absolument irréductible de G peut être...

Currently displaying 641 – 660 of 694