The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 21 – 40 of 92

Showing per page

On the Brocard-Ramanujan problem and generalizations

Andrzej Dąbrowski (2012)

Colloquium Mathematicae

Let p i denote the ith prime. We conjecture that there are precisely 28 solutions to the equation n ² - 1 = p α p k α k in positive integers n and α₁,..., α k . This conjecture implies an explicit description of the set of solutions to the Brocard-Ramanujan equation. We also propose another variant of the Brocard-Ramanujan problem: describe the set of solutions in non-negative integers of the equation n! + A = x₁²+x₂²+x₃² (A fixed).

On the Diophantine equation ( 2 x - 1 ) ( p y - 1 ) = 2 z 2

Ruizhou Tong (2021)

Czechoslovak Mathematical Journal

Let p be an odd prime. By using the elementary methods we prove that: (1) if 2 x , p ± 3 ( mod 8 ) , the Diophantine equation ( 2 x - 1 ) ( p y - 1 ) = 2 z 2 has no positive integer solution except when p = 3 or p is of the form p = 2 a 0 2 + 1 , where a 0 > 1 is an odd positive integer. (2) if 2 x , 2 y , y 2 , 4 , then the Diophantine equation ( 2 x - 1 ) ( p y - 1 ) = 2 z 2 has no positive integer solution.

Currently displaying 21 – 40 of 92