The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let denote the ith prime. We conjecture that there are precisely 28 solutions to the equation in positive integers n and α₁,..., . This conjecture implies an explicit description of the set of solutions to the Brocard-Ramanujan equation. We also propose another variant of the Brocard-Ramanujan problem: describe the set of solutions in non-negative integers of the equation n! + A = x₁²+x₂²+x₃² (A fixed).
Let be an odd prime. By using the elementary methods we prove that: (1) if , the Diophantine equation has no positive integer solution except when or is of the form , where is an odd positive integer. (2) if , , then the Diophantine equation has no positive integer solution.
P. 294, line 14: For “Satz 8” read “Satz 7”, and for “equation (10)” read “equation (13)”.
Currently displaying 21 –
40 of
92