Displaying 41 – 60 of 90

Showing per page

On the diophantine equation x 2 + 2 a 3 b 73 c = y n

Murat Alan, Mustafa Aydin (2023)

Archivum Mathematicum

In this paper, we find all integer solutions ( x , y , n , a , b , c ) of the equation in the title for non-negative integers a , b and c under the condition that the integers x and y are relatively prime and n 3 . The proof depends on the famous primitive divisor theorem due to Bilu, Hanrot and Voutier and the computational techniques on some elliptic curves.

On the Diophantine equation x 2 + 2 α 5 β 17 γ = y n

Hemar Godinho, Diego Marques, Alain Togbé (2012)

Communications in Mathematics

In this paper, we find all solutions of the Diophantine equation x 2 + 2 α 5 β 17 γ = y n in positive integers x , y 1 , α , β , γ , n 3 with gcd ( x , y ) = 1 .

On the diophantine equation x 2 + 5 k 17 l = y n

István Pink, Zsolt Rábai (2011)

Communications in Mathematics

Consider the equation in the title in unknown integers ( x , y , k , l , n ) with x 1 , y > 1 , n 3 , k 0 , l 0 and gcd ( x , y ) = 1 . Under the above conditions we give all solutions of the title equation (see Theorem 1).

On the diophantine equation x 2 = y p + 2 k z p

Samir Siksek (2003)

Journal de théorie des nombres de Bordeaux

We attack the equation of the title using a Frey curve, Ribet’s level-lowering theorem and a method due to Darmon and Merel. We are able to determine all the solutions in pairwise coprime integers x , y , z if p 7 is prime and k 2 . From this we deduce some results about special cases of this equation that have been studied in the literature. In particular, we are able to combine our result with previous results of Arif and Abu Muriefah, and those of Cohn to obtain a complete solution for the equation x 2 + 2 k = y n for...

On the diophantine equation ( x m + 1 ) ( x n + 1 ) = y ²

Maohua Le (1997)

Acta Arithmetica

1. Introduction. Let ℤ, ℕ, ℚ be the sets of integers, positive integers and rational numbers respectively. In [7], Ribenboim proved that the equation    (1) ( x m + 1 ) ( x n + 1 ) = y ² , x,y,m,n ∈ ℕ, x > 1, n > m ≥ 1, has no solution (x,y,m,n) with 2|x and (1) has only finitely many solutions (x,y,m,n) with 2∤x. Moreover, all solutions of (1) with 2∤x satisfy max(x,m,n) < C, where C is an effectively computable constant. In this paper we completely determine all solutions of (1) as follows.   Theorem. Equation (1)...

On the diophantine equation x y - y x = c z

Zhongfeng Zhang, Jiagui Luo, Pingzhi Yuan (2012)

Colloquium Mathematicae

Applying results on linear forms in p-adic logarithms, we prove that if (x,y,z) is a positive integer solution to the equation x y - y x = c z with gcd(x,y) = 1 then (x,y,z) = (2,1,k), (3,2,k), k ≥ 1 if c = 1, and either ( x , y , z ) = ( c k + 1 , 1 , k ) , k ≥ 1 or 2 x < y m a x 1 . 5 × 10 10 , c if c ≥ 2.

On the diophantine equation xp - x = yq - y.

Maurice Mignotte, Attila Petho (1999)

Publicacions Matemàtiques

We consider the diophantine equation(*)    xp - x = yq - y in integers (x, p, y, q). We prove that for given p and q with 2 ≤ p &lt; q, (*) has only finitely many solutions. Assuming the abc-conjecture we can prove that p and q are bounded. In the special case p = 2 and y a prime power we are able to solve (*) completely.

Currently displaying 41 – 60 of 90