The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1 Next

Displaying 1 – 20 of 139

Showing per page

... 1/4

Marie-France VIGNERAS (1981/1982)

Seminaire de Théorie des Nombres de Bordeaux

An arithmetic Riemann-Roch theorem for pointed stable curves

Gérard Freixas Montplet (2009)

Annales scientifiques de l'École Normale Supérieure

Let ( 𝒪 , Σ , F ) be an arithmetic ring of Krull dimension at most 1, 𝒮 = Spec 𝒪 and ( π : 𝒳 𝒮 ; σ 1 , ... , σ n ) an n -pointed stable curve of genus g . Write 𝒰 = 𝒳 j σ j ( 𝒮 ) . The invertible sheaf ω 𝒳 / 𝒮 ( σ 1 + + σ n ) inherits a hermitian structure · hyp from the dual of the hyperbolic metric on the Riemann surface 𝒰 . In this article we prove an arithmetic Riemann-Roch type theorem that computes the arithmetic self-intersection of ω 𝒳 / 𝒮 ( σ 1 + ... + σ n ) hyp . The theorem is applied to modular curves X ( Γ ) , Γ = Γ 0 ( p ) or Γ 1 ( p ) , p 11 prime, with sections given by the cusps. We show Z ' ( Y ( Γ ) , 1 ) e a π b Γ 2 ( 1 / 2 ) c L ( 0 , Γ ) , with p 11 m o d 12 when Γ = Γ 0 ( p ) . Here Z ( Y ( Γ ) , s ) is the Selberg zeta...

Artin formalism for Selberg zeta functions of co-finite Kleinian groups

Eliot Brenner, Florin Spinu (2009)

Journal de Théorie des Nombres de Bordeaux

Let Γ 3 be a finite-volume quotient of the upper-half space, where Γ SL ( 2 , ) is a discrete subgroup. To a finite dimensional unitary representation χ of Γ one associates the Selberg zeta function Z ( s ; Γ ; χ ) . In this paper we prove the Artin formalism for the Selberg zeta function. Namely, if Γ ˜ is a finite index group extension of Γ in SL ( 2 , ) , and π = Ind Γ Γ ˜ χ is the induced representation, then Z ( s ; Γ ; χ ) = Z ( s ; Γ ˜ ; π ) . In the second part of the paper we prove by a direct method the analogous identity for the scattering function, namely φ ( s ; Γ ; χ ) = φ ( s ; Γ ˜ ; π ) , for an appropriate...

Base change for Bernstein centers of depth zero principal series blocks

Thomas J. Haines (2012)

Annales scientifiques de l'École Normale Supérieure

Let  G be an unramified group over a p -adic field. This article introduces a base change homomorphism for Bernstein centers of depth-zero principal series blocks for  G and proves the corresponding base change fundamental lemma. This result is used in the approach to Shimura varieties with Γ 1 ( p ) -level structure initiated by M. Rapoport and the author in [15].

Currently displaying 1 – 20 of 139

Page 1 Next