The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In this short note we give a new approach to proving modularity of -adic Galois representations using a method of -adic approximations. This recovers some of the well-known results of Wiles and Taylor in many, but not all, cases. A feature of the new approach is that it works directly with the -adic Galois representation whose modularity is sought to be established. The three main ingredients are a Galois cohomology technique of Ramakrishna, a level raising result due to Ribet, Diamond, Taylor,...
Special values of certain functions of the type are studied where is a motive over a totally real field with coefficients in another field , andis an Euler product running through maximal ideals of the maximal order of andbeing a polynomial with coefficients in . Using the Newton and the Hodge polygons of one formulate a conjectural criterium for the existence of a -adic analytic continuation of the special values. This conjecture is verified in a number of cases related to...
Currently displaying 1 –
2 of
2