The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 41 – 60 of 72

Showing per page

Palindromic powers.

Hernández, Santos Hernández, Luca, Florian (2006)

Revista Colombiana de Matemáticas

Six lonely runners.

Bohman, Tom, Holzman, Ron, Kleitman, Dan (2001)

The Electronic Journal of Combinatorics [electronic only]

Solutions entières de l’équation Y m = f ( X )

Dimitrios Poulakis (1991)

Journal de théorie des nombres de Bordeaux

Soit K un corps de nombres. Dans ce travail nous calculons des majorants effectifs pour la taille des solutions en entiers algébriques de K des équations, Y 2 = f ( X ) , où f ( X ) K [ X ] a au moins trois racines d’ordre impair, et Y m = f ( X ) m 3 et f ( X ) K [ X ] a au moins deux racines d’ordre premier à m . On améliore ainsi les estimations connues ([2],[9]) pour les solutions de ces équations en entiers algébriques de K .

Systems of quadratic diophantine inequalities

Wolfgang Müller (2005)

Journal de Théorie des Nombres de Bordeaux

Let Q 1 , , Q r be quadratic forms with real coefficients. We prove that for any ϵ > 0 the system of inequalities | Q 1 ( x ) | < ϵ , , | Q r ( x ) | < ϵ has a nonzero integer solution, provided that the system Q 1 ( x ) = 0 , , Q r ( x ) = 0 has a nonsingular real solution and all forms in the real pencil generated by Q 1 , , Q r are irrational and have rank > 8 r .

Currently displaying 41 – 60 of 72