The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 241 – 260 of 461

Showing per page

On elementary abelian 2-Sylow K₂ of rings of integers of certain quadratic number fields

P. E. Conner, J. Hurrelbrink (1995)

Acta Arithmetica

A large number of papers have contributed to determining the structure of the tame kernel K F of algebraic number fields F. Recently, for quadratic number fields F whose discriminants have at most three odd prime divisors, 4-rank formulas for K F have been made very explicit by Qin Hourong in terms of the indefinite quadratic form x² - 2y² (see [7], [8]). We have made a successful effort, for quadratic number fields F = ℚ (√(±p₁p₂)), to characterize in terms of positive definite binary quadratic forms,...

On integral representations by totally positive ternary quadratic forms

Elise Björkholdt (2000)

Journal de théorie des nombres de Bordeaux

Let K be a totally real algebraic number field whose ring of integers R is a principal ideal domain. Let f ( x 1 , x 2 , x 3 ) be a totally definite ternary quadratic form with coefficients in R . We shall study representations of totally positive elements N R by f . We prove a quantitative formula relating the number of representations of N by different classes in the genus of f to the class number of R [ - c f N ] , where c f R is a constant depending only on f . We give an algebraic proof of a classical result of H. Maass on representations...

On some metabelian 2-groups and applications I

Abdelmalek Azizi, Abdelkader Zekhnini, Mohammed Taous (2016)

Colloquium Mathematicae

Let G be some metabelian 2-group satisfying the condition G/G’ ≃ ℤ/2ℤ × ℤ/2ℤ × ℤ/2ℤ. In this paper, we construct all the subgroups of G of index 2 or 4, we give the abelianization types of these subgroups and we compute the kernel of the transfer map. Then we apply these results to study the capitulation problem for the 2-ideal classes of some fields k satisfying the condition G a l ( k ( 2 ) / k ) G , where k ( 2 ) is the second Hilbert 2-class field of k.

On the 2 -class group of some number fields with large degree

Mohamed Mahmoud Chems-Eddin, Abdelmalek Azizi, Abdelkader Zekhnini (2021)

Archivum Mathematicum

Let d be an odd square-free integer, m 3 any integer and L m , d : = ( ζ 2 m , d ) . In this paper, we shall determine all the fields L m , d having an odd class number. Furthermore, using the cyclotomic 2 -extensions of some number fields, we compute the rank of the 2 -class group of L m , d whenever the prime divisors of d are congruent to 3 or 5 ( mod 8 ) .

Currently displaying 241 – 260 of 461