The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Previous Page 2

Displaying 21 – 35 of 35

Showing per page

Sur le groupe des unités de corps de nombres de degré 2 et 4

M’hammed Ziane (2007)

Journal de Théorie des Nombres de Bordeaux

Nous déterminons sous certaines hypothèses, un système fondamental d’unités du corps non pur K = ( ω ) et de son sous-corps quadratique, où ω est solution du polynôme f ( X ) = X 4 + d - 2 M 6 X 2 - M 4 , avec M 6 = D 6 + 6 D 4 d + 9 D 2 d 2 + 2 d 3 , M 4 = D 4 + 4 D 2 d + 2 d 2 , d | D , d , D , non nuls.

Sur les 𝐙 2 -extensions d’un corps quadratique imaginaire

Georges Gras (1983)

Annales de l'institut Fourier

Soit k = Q ( - m ) un corps quadratique imaginaire, soient k et F ses deux Z 2 -extensions naturelles (la cyclotomique et la prodiédrale), et soit k ˇ son 2-corps de classes de Hilbert. Soient 𝒫 le complété en 2 de k , ρ = 0 ou 1, égale à 1 si et seulement si tout diviseur impair de m est congru à ± 1 mod 8 , χ = 0 ou 1 le 2-rang de Gal ( k F / k ) , et t = 0 , 1 ou 2 le 2-rang de Gal k ˇ F k ˇ / k ) . On a χ ρ , et des considérations cohomologiques élémentaires nous donnent d’autres contraintes entre 𝒫 , χ et t , mais nous trouvons 2 obstructions supplémentaires de nature...

Currently displaying 21 – 35 of 35

Previous Page 2