The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 701 – 720 of 807

Showing per page

Sur les singularités isolées d'intersections complètes quasi-homogènes

Marc Giusti (1977)

Annales de l'institut Fourier

Le résultat principal de cet article est une formule explicite donnant le nombre de Milnor d’une singularité isolée d’intersection complète quasi-homogène d’une courbe de C 3 en fonction des degrés et des poids. Ce calcul effectué par des méthodes topologiques repose sur le théorème suivant : la fibre de Milnor d’une singularité isolée d’intersection complète quasi-homogène ne dépend que des degrés et des poids à difféomorphisme près. Une autre conséquence de ce théorème est l’existence d’une morsification...

Sur les variétés X N telles que par n points passe une courbe de X de degré donné

Luc Pirio, Jean-Marie Trépreau (2013)

Bulletin de la Société Mathématique de France

Soit r 1 , n 2 , et q n - 1 des entiers. On introduit la classe 𝒳 r + 1 , n ( q ) des sous-variétés X de dimension r + 1 d’un espace projectif, telles que pour ( x 1 , ... , x n ) X n générique, il existe une courbe rationnelle normale de degré q , contenue dans X et passant par les points x 1 , ... , x n  ; X engendre un espace projectif dont la dimension, pour r , n et q donnés, est la plus grande possible compte tenu de la première propriété. Sous l’hypothèse q 2 n - 3 , on détermine toutes les variétés X appartenant à la classe 𝒳 r + 1 , n ( q ) . On montre en particulier qu’il existe une...

Sur l’espace de modules des faisceaux semi stables de rang 2, de classes de Chern (0,3) sur 2

K. Hulek, Joseph Le Potier (1989)

Annales de l'institut Fourier

L’espace de modules M = M ( 0 , 3 ) des faisceaux semi-stables de rang 2, de classes de Chern (0,3) sur le plan projectif 2 est une variété projective irréductible et lisse de dimension 9. Dans M , les points qui ne proviennent pas d’un faisceau localement libre constituent une hypersurface M . Dans cet article, nous montrons que toute surface complété de M rencontre la frontière M , autrement dit qu’il n’existe pas de famille de fibrés vectoriels paramétrée par une surface complète de M . La démonstration repose...

Sur l’holonomie de 𝒟 -modules arithmétiques associés à des F -isocristaux surconvergents sur des courbes lisses

Christine Noot-Huyghe, Fabien Trihan (2007)

Annales de la faculté des sciences de Toulouse Mathématiques

Nous montrons que le 𝒟 -module arithmétique associé à un F -isocristal surconvergent sur une courbe lisse est holonome. Nous montrons d’abord que les F -isocristaux unipotents sont des 𝒟 -modules holonomes en utilisant le fait que de tels F -isocristaux proviennent de F -isocristaux logarithmiques. Nous déduisons le cas général du théorème de réduction semi-stable pour les F -isocristaux sur les courbes de Matsuda-Trihan qui repose sur le théorème de monodromie p -adique démontré indépendamment par André,...

Currently displaying 701 – 720 of 807