The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 161 –
180 of
271
Si est une variété algébrique projective sur un corps de nombres dont les points rationnels sont denses pour la topologie de Zariski, il est naturel de munir d’une hauteur et d’étudier de manière asymptotique les points de hauteur bornée sur . Le but de ce texte est de faire le survol d’un programme initié par Manin visant à interpréter de façon géométrique ce comportement.
This is a survey paper on the distribution of algebraic points on algebraic varieties.
On étudie différentes propriétés d’approximation pour des espaces homogènes (à stabilisateur fini) de sur un corps de nombres. On discute également du lien avec le problème de Galois inverse et on établit une formule pour le groupe de Brauer non ramifié de .
On construit des courbes elliptiques sur de rang au moins 3, avec un sous-groupe de torsion non trivial. Par spécialisation, des courbes elliptiques de rang 5 et 6 sur sont obtenues.
We prove a version of the Hilbert Irreducibility Theorem for linear algebraic groups. Given a connected linear algebraic group , an affine variety and a finite map , all defined over a finitely generated field of characteristic zero, Theorem 1.6 provides the natural necessary and sufficient condition under which the set contains a Zariski dense sub-semigroup ; namely, there must exist an unramified covering and a map such that . In the case , is the additive group, we reobtain the...
Currently displaying 161 –
180 of
271