The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
This note deals with Lagrangian fibrations of elliptic K3 surfaces and the associated Hamiltonian monodromy. The fibration is constructed through the Weierstraß normal form of elliptic surfaces. There is given an example of K3 dynamical models with the identity monodromy matrix around 12 elementary singular loci.
Principally polarized abelian surfaces are the Jacobians of smooth genus 2 curves or of stable genus 2 curves of special type. In [S] we studied equations describing Kummer surfaces in the case of an irreducible principal polarization on the abelian surface. The aim of this note is to give a treatment of the second case. We describe intermediate Kummer surfaces coming from abelian surfaces carrying a product principal polarization. In Proposition 12 we give explicit equations of these surfaces in...
On s’intéresse aux fibrations elliptiques d’une surface singulière en vue de construire des courbes elliptiques avec torsion et rang sur .
We give a classification of finite group actions on a surface giving rise to quotients, from the point of view of their fixed points. It is shown that except two cases, each such group gives rise to a unique type of fixed point set.
We consider the generic Green conjecture on syzygies of a canonical curve, and particularly the following reformulation thereof: For a smooth projective curve of genus in characteristic 0, the condition is equivalent to the fact that . We propose a new approach, which allows up to prove this result for generic curves of genus and gonality in the range
On a general quasismooth well-formed weighted hypersurface of degree Σi=14 a i in ℙ(1, a 1, a 2, a 3, a 4), we classify all pencils whose general members are surfaces of Kodaira dimension zero.
We classify the cohomology classes of Lagrangian 4-planes ℙ4 in a smooth manifold X deformation equivalent to a Hilbert scheme of four points on a K3 surface, up to the monodromy action. Classically, the Mori cone of effective curves on a K3 surface S is generated by nonnegative classes C, for which (C, C) ≥ 0, and nodal classes C, for which (C, C) = −2; Hassett and Tschinkel conjecture that the Mori cone of a holomorphic symplectic variety X is similarly controlled by “nodal” classes C such that...
We investigate the existence of Lagrangian fibrations on the generalized Kummer varieties of Beauville. For a principally polarized abelian surface of Picard number one we find the following: The Kummer variety is birationally equivalent to another irreducible symplectic variety admitting a Lagrangian fibration, if and only if is a perfect square. And this is the case if and only if carries a divisor with vanishing Beauville-Bogomolov square.
Currently displaying 21 –
40 of
94