The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 201 –
220 of
851
Dans l'article, on a défini une équation d'operateur équivalent à la formulation variationnelle du problème. Les solutions de cette équation sont des points critiques de la fonctionnelle qu'elle porte le nom d'énergie totale de déformation. La fonctionnelle est coercive et faiblement séquentiellement semi-continue inférieure. Par le théorème de l'analyse fonctionnelle, on a obtenu le résultat d'existence pour le problème.
Dans l'article, on a donné quelques conditions suffisantes pour l'unicité locale et globale de la solution du problème. On a construit une solution variationnelle du problème par la méthode de Newton-Kantorovitch et la méthode du prolongement continu avec ces conditions suffisantes pour l'unicité.
On considère le problème :où est un ouvert borné de , où est une fonction de Carathéodory, monotone en , coercive, qui définit un opérateur dans (avec ), et où appartient à ou est une mesure bornée sur . On introduit une nouvelle définition de la solution de ce problème, la notion de solution renormalisée (ou entropique), et on montre l’existence d’une telle solution et sa continuité par rapport à . Quand appartient à , on montre en outre que cette solution est unique.
We consider a nonlinear second order elliptic boundary value problem (BVP) in a bounded domain with a nonlocal boundary condition. A Dirichlet BC containing an unknown additive constant, accompanied with a nonlocal (integral) Neumann side condition is prescribed at some boundary part . The rest of the boundary is equipped with Dirichlet or nonlinear Robin type BC. The solution is found via linearization. We design a robust and efficient approximation scheme. Error estimates for the linearization...
We consider a nonlinear second order elliptic boundary
value problem (BVP)
in a bounded domain with
a nonlocal boundary condition.
A Dirichlet BC containing an unknown additive constant,
accompanied with a nonlocal (integral) Neumann side condition is
prescribed at some boundary part Γn.
The rest of the boundary is equipped with Dirichlet or nonlinear Robin
type BC. The solution is found via linearization. We design a robust and
efficient approximation scheme.
Error estimates for...
Currently displaying 201 –
220 of
851