Displaying 341 – 360 of 901

Showing per page

Global classical solutions in a self-consistent chemotaxis(-Navier)-Stokes system

Yanjiang Li, Zhongqing Yu, Yumei Huang (2024)

Czechoslovak Mathematical Journal

The self-consistent chemotaxis-fluid system n t + u · n = Δ n - · ( n c ) + · ( n φ ) , x Ω , t > 0 , c t + u · c = Δ c - n c , x Ω , t > 0 , u t + κ ( u · ) u + P = Δ u - n φ + n c , x Ω , t > 0 , · u = 0 , x Ω , t > 0 , is considered under no-flux boundary conditions for n , c and the Dirichlet boundary condition for u on a bounded smooth domain Ω N ( N = 2 , 3 ...

Global controllability properties for the semilinear heat equation with superlinear term.

A. Y. Khapalov (1999)

Revista Matemática Complutense

We discuss several global approximate controllability properties for the semilinear heat equation with superlinear reaction-convection term, governed in a bounded domain by locally distributed controls. First, based on the asymptotic analysis in vanishing time, we study the steering of the projections of its solution on any finite dimensional space spanned by the eigenfunctions for the truncated linear part. We show that, if the control-supporting area is properly chosen, then they can approximately...

Global existence and regularity of solutions for complex Ginzburg-Landau equations

Stéphane Descombes, Mohand Moussaoui (2000)

Bollettino dell'Unione Matematica Italiana

Si considerano equazioni di Ginzburg-Landau complesse del tipo u t - α Δ u + P u 2 u = 0 in R N dove P è polinomio di grado K a coefficienti complessi e α è un numero complesso con parte reale positiva α . Nell'ipotesi che la parte reale del coefficiente del termine di grado massimo P sia positiva, si dimostra l'esistenza e la regolarità di una soluzione globale nel caso α < C α , dove C dipende da K e N .

Global existence and stability of some semilinear problems

Mokhtar Kirane, Nasser-eddine Tatar (2000)

Archivum Mathematicum

We prove global existence and stability results for a semilinear parabolic equation, a semilinear functional equation and a semilinear integral equation using an inequality which may be viewed as a nonlinear singular version of the well known Gronwall and Bihari inequalities.

Global existence versus blow up for some models of interacting particles

Piotr Biler, Lorenzo Brandolese (2006)

Colloquium Mathematicae

We study the global existence and space-time asymptotics of solutions for a class of nonlocal parabolic semilinear equations. Our models include the Nernst-Planck and Debye-Hückel drift-diffusion systems as well as parabolic-elliptic systems of chemotaxis. In the case of a model of self-gravitating particles, we also give a result on the finite time blow up of solutions with localized and oscillating complex-valued initial data, using a method due to S. Montgomery-Smith.

Global solution to a generalized nonisothermal Ginzburg-Landau system

Nesrine Fterich (2010)

Applications of Mathematics

The article deals with a nonlinear generalized Ginzburg-Landau (Allen-Cahn) system of PDEs accounting for nonisothermal phase transition phenomena which was recently derived by A. Miranville and G. Schimperna: Nonisothermal phase separation based on a microforce balance, Discrete Contin. Dyn. Syst., Ser. B, 5 (2005), 753–768. The existence of solutions to a related Neumann-Robin problem is established in an N 3 -dimensional space setting. A fixed point procedure guarantees the existence of solutions...

Currently displaying 341 – 360 of 901