Displaying 501 – 520 of 898

Showing per page

Numerical methods for fourth order nonlinear degenerate diffusion problems

Jürgen Becker, Günther Grün, Martin Lenz, Martin Rumpf (2002)

Applications of Mathematics

Numerical schemes are presented for a class of fourth order diffusion problems. These problems arise in lubrication theory for thin films of viscous fluids on surfaces. The equations being in general fourth order degenerate parabolic, additional singular terms of second order may occur to model effects of gravity, molecular interactions or thermocapillarity. Furthermore, we incorporate nonlinear surface tension terms. Finally, in the case of a thin film flow driven by a surface active agent (surfactant),...

Numerical schemes for a three component Cahn-Hilliard model

Franck Boyer, Sebastian Minjeaud (2011)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this article, we investigate numerical schemes for solving a three component Cahn-Hilliard model. The space discretization is performed by using a Galerkin formulation and the finite element method. Concerning the time discretization, the main difficulty is to write a scheme ensuring, at the discrete level, the decrease of the free energy and thus the stability of the method. We study three different schemes and prove existence and convergence theorems. Theoretical results are illustrated by...

Numerical schemes for a three component Cahn-Hilliard model

Franck Boyer, Sebastian Minjeaud (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

In this article, we investigate numerical schemes for solving a three component Cahn-Hilliard model. The space discretization is performed by using a Galerkin formulation and the finite element method. Concerning the time discretization, the main difficulty is to write a scheme ensuring, at the discrete level, the decrease of the free energy and thus the stability of the method. We study three different schemes and prove existence and convergence theorems. Theoretical results are illustrated by...

Numerical simulation of a point-source initiated flame ball with heat losses

Jacques Audounet, Jean-Michel Roquejoffre, Hélène Rouzaud (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This article is devoted to the numerical study of a flame ball model, derived by Joulin, which obeys to a singular integro-differential equation. The numerical scheme that we analyze here, is based upon a one step method, and we are interested in its long-time behaviour. We recover the same dynamics as in the continuous case: quenching, or stabilization of the flame, depending on heat losses, and an energy input parameter.

Numerical simulation of a point-source initiated flame ball with heat losses

Jacques Audounet, Jean-Michel Roquejoffre, Hélène Rouzaud (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This article is devoted to the numerical study of a flame ball model, derived by Joulin, which obeys to a singular integro-differential equation. The numerical scheme that we analyze here, is based upon a one step method, and we are interested in its long-time behaviour. We recover the same dynamics as in the continuous case: quenching, or stabilization of the flame, depending on heat losses, and an energy input parameter.

On a Caginalp phase-field system with a logarithmic nonlinearity

Charbel Wehbe (2015)

Applications of Mathematics

We consider a phase field system based on the Maxwell Cattaneo heat conduction law, with a logarithmic nonlinearity, associated with Dirichlet boundary conditions. In particular, we prove, in one and two space dimensions, the existence of a solution which is strictly separated from the singularities of the nonlinear term and that the problem possesses a finite-dimensional global attractor in terms of exponential attractors.

On a phase-field model with a logarithmic nonlinearity

Alain Miranville (2012)

Applications of Mathematics

Our aim in this paper is to study the existence of solutions to a phase-field system based on the Maxwell-Cattaneo heat conduction law, with a logarithmic nonlinearity. In particular, we prove, in one and two space dimensions, the existence of a solution which is separated from the singularities of the nonlinear term.

On an optimal control problem for a quasilinear parabolic equation

S. Farag, M. Farag (2000)

Applicationes Mathematicae

An optimal control problem governed by a quasilinear parabolic equation with additional constraints is investigated. The optimal control problem is converted to an optimization problem which is solved using a penalty function technique. The existence and uniqueness theorems are investigated. The derivation of formulae for the gradient of the modified function is explainedby solving the adjoint problem.

Currently displaying 501 – 520 of 898