Previous Page 6

Displaying 101 – 113 of 113

Showing per page

Asymptotic behavior of the solutions to a one-dimensional motion of compressible viscous fluids

Shigenori Yanagi (1995)

Mathematica Bohemica

We study the one-dimensional motion of the viscous gas represented by the system v t - u x = 0 , u t + p ( v ) x = μ ( u x / v ) x + f 0 x v x ¨ , t , with the initial and the boundary conditions ( v ( x , 0 ) , u ( x , 0 ) ) = ( v 0 ( x ) , u 0 ( x ) ) , u ( 0 , t ) = u ( X , t ) = 0 . We are concerned with the external forces, namely the function f , which do not become small for large time t . The main purpose is to show how the solution to this problem behaves around the stationary one, and the proof is based on an elementary L 2 -energy method.

Asymptotics and stability for global solutions to the Navier-Stokes equations

Isabelle Gallagher, Dragos Iftimie, Fabrice Planchon (2003)

Annales de l’institut Fourier

We consider an a priori global strong solution to the Navier-Stokes equations. We prove it behaves like a small solution for large time. Combining this asymptotics with uniqueness and averaging in time properties, we obtain the stability of such a global solution.

Currently displaying 101 – 113 of 113

Previous Page 6