Displaying 81 – 100 of 113

Showing per page

Analysis of the boundary symbol for the two-phase Navier-Stokes equations with surface tension

Jan Prüss, Gieri Simonett (2009)

Banach Center Publications

The two-phase free boundary value problem for the Navier-Stokes system is considered in a situation where the initial interface is close to a halfplane. We extract the boundary symbol which is crucial for the dynamics of the free boundary and present an analysis of this symbol. Of particular interest are its singularities and zeros which lead to refined mapping properties of the corresponding operator.

Analysis of the flows of incompressible fluids with pressure dependent viscosity fulfilling ν ( p , · ) + as p +

M. Bulíček, Josef Málek, Kumbakonam R. Rajagopal (2009)

Czechoslovak Mathematical Journal

Over a large range of the pressure, one cannot ignore the fact that the viscosity grows significantly (even exponentially) with increasing pressure. This paper concerns long-time and large-data existence results for a generalization of the Navier-Stokes fluid whose viscosity depends on the shear rate and the pressure. The novelty of this result stems from the fact that we allow the viscosity to be an unbounded function of pressure as it becomes infinite. In order to include a large class of viscosities...

Analysis of the hydrostatic approximation in oceanography with compression term

Tomás Chacón Rebollo, Roger Lewandowski, Eliseo Chacón Vera (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The hydrostatic approximation of the incompressible 3D stationary Navier-Stokes equations is widely used in oceanography and other applied sciences. It appears through a limit process due to the anisotropy of the domain in use, an ocean, and it is usually studied as such. We consider in this paper an equivalent formulation to this hydrostatic approximation that includes Coriolis force and an additional pressure term that comes from taking into account the pressure in the state equation for...

Analysis of the hydrostatic approximation in oceanography with compression term

Tomás Chacón Rebollo, Roger Lewandowski, Eliseo Chacón Vera (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The hydrostatic approximation of the incompressible 3D stationary Navier-Stokes equations is widely used in oceanography and other applied sciences. It appears through a limit process due to the anisotropy of the domain in use, an ocean, and it is usually studied as such. We consider in this paper an equivalent formulation to this hydrostatic approximation that includes Coriolis force and an additional pressure term that comes from taking into account the pressure in the state equation for...

Anisotropic mesh adaption: application to computational fluid dynamics

Simona Perotto (2005)

Bollettino dell'Unione Matematica Italiana

In this communication we focus on goal-oriented anisotropic adaption techniques. Starting point has been the derivation of suitable anisotropic interpolation error estimates for piecewise linear finite elements, on triangular grids in 2 D . Then we have merged these interpolation estimates with the dual-based a posteriori error analysis proposed by R. Rannacher and R. Becker. As examples of this general anisotropic a posteriori analysis, elliptic, advection-diffusion-reaction and the Stokes problems...

Application of very weak formulation on homogenization of boundary value problems in porous media

Eduard Marušić-Paloka (2021)

Czechoslovak Mathematical Journal

The goal of this paper is to present a different approach to the homogenization of the Dirichlet boundary value problem in porous medium. Unlike the standard energy method or the method of two-scale convergence, this approach is not based on the weak formulation of the problem but on the very weak formulation. To illustrate the method and its advantages we treat the stationary, incompressible Navier-Stokes system with the non-homogeneous Dirichlet boundary condition in periodic porous medium. The...

Approximate controllability of a hydro-elastic coupled system

Jacques-Louis Lions, Enrique Zuazua (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We analyze the controllability of the motion of a fluid by means of the action of a vibrating shell coupled at the boundary of the fluid. The model considered is linear. We study its approximate controllability, i.e. whether the fluid may reach a dense set of final configurations at a given time. We show that this problem can be reduced to a unique continuation question for the Stokes system. We prove that this unique continuation property holds generically among analytic domains and therefore,...

Approximation and eigenvalue extrapolation of Stokes eigenvalue problem by nonconforming finite element methods

Shanghui Jia, Hehu Xie, Xiaobo Yin, Shaoqin Gao (2009)

Applications of Mathematics

In this paper we analyze the stream function-vorticity-pressure method for the Stokes eigenvalue problem. Further, we obtain full order convergence rate of the eigenvalue approximations for the Stokes eigenvalue problem based on asymptotic error expansions for two nonconforming finite elements, Q 1 rot and E Q 1 rot . Using the technique of eigenvalue error expansion, the technique of integral identities and the extrapolation method, we can improve the accuracy of the eigenvalue approximations.

Approximation of an eigenvalue problem associated with the Stokes problem by the stream function-vorticity-pressure method

Wei Chen, Qun Lin (2006)

Applications of Mathematics

By means of eigenvalue error expansion and integral expansion techniques, we propose and analyze the stream function-vorticity-pressure method for the eigenvalue problem associated with the Stokes equations on the unit square. We obtain an optimal order of convergence for eigenvalues and eigenfuctions. Furthermore, for the bilinear finite element space, we derive asymptotic expansions of the eigenvalue error, an efficient extrapolation and an a posteriori error estimate for the eigenvalue. Finally,...

Asymptotic behavior of a steady flow in a two-dimensional pipe

Piotr Bogusław Mucha (2003)

Studia Mathematica

The paper investigates the asymptotic behavior of a steady flow of an incompressible viscous fluid in a two-dimensional infinite pipe with slip boundary conditions and large flux. The convergence of the solutions to data at infinities is examined. The technique enables computing optimal factors of exponential decay at the outlet and inlet of the pipe which are unsymmetric for nonzero fluxes of the flow. As a corollary, the asymptotic structure of the solutions is obtained. The results show strong...

Currently displaying 81 – 100 of 113