Displaying 101 – 120 of 139

Showing per page

On the local strong solutions for a system describing the flow of a viscoelastic fluid

Ondřej Kreml, Milan Pokorný (2009)

Banach Center Publications

We consider a model for the viscoelastic fluid which has recently been studied in [4] and [1]. We show the local-in-time existence of a strong solution to the corresponding system of partial differential equations under less regularity assumptions on the initial data than in the above mentioned papers. The main difference in our approach is the use of the L p theory for the Stokes system.

On the long-time behaviour of compressible fluid flows subjected to highly oscillating external forces

Sergiu Aizicovici, Eduard Feireisl (2003)

Czechoslovak Mathematical Journal

We show that the global-in-time solutions to the compressible Navier-Stokes equations driven by highly oscillating external forces stabilize to globally defined (on the whole real line) solutions of the same system with the driving force given by the integral mean of oscillations. Several stability results will be obtained.

On the motion of rigid bodies in a viscous fluid

Eduard Feireisl (2002)

Applications of Mathematics

We consider the problem of motion of several rigid bodies in a viscous fluid. Both compressible and incompressible fluids are studied. In both cases, the existence of globally defined weak solutions is established regardless possible collisions of two or more rigid objects.

On the parameter in augmented Lagrangian preconditioning for isogeometric discretizations of the Navier-Stokes equations

Jiří Egermaier, Hana Horníková (2022)

Applications of Mathematics

In this paper, we deal with the optimal choice of the parameter γ for augmented Lagrangian preconditioning of GMRES method for efficient solution of linear systems obtained from discretization of the incompressible Navier-Stokes equations. We consider discretization of the equations using the B-spline based isogeometric analysis approach. We are interested in the dependence of the convergence on the parameter γ for various problem parameters (Reynolds number, mesh refinement) and especially for...

On the small time asymptotics of the two-dimensional stochastic Navier–Stokes equations

Tiange Xu, Tusheng Zhang (2009)

Annales de l'I.H.P. Probabilités et statistiques

In this paper, we establish a small time large deviation principle (small time asymptotics) for the two-dimensional stochastic Navier–Stokes equations driven by multiplicative noise, which not only involves the study of the small noise, but also the investigation of the effect of the small, but highly nonlinear, unbounded drifts.

Currently displaying 101 – 120 of 139