The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Global existence of solutions for equations describing a motion of magnetohydrodynamic compresible fluid in a domain bounded by a free surface is proved. In the exterior domain we have an electromagnetic field which is generated by some currents located on a fixed boundary. We have proved that the domain occupied by the fluid remains close to the initial domain for all time.
We prove the global in time existence of a small solution for the 3D micropolar fluid system in critical Fourier-Herz spaces by using the Fourier localization method and Littlewood-Paley theory.
We study the Cauchy problem for the 3D MHD system with damping terms and (ε, δ > 0 and α, β ≥ 1), and show that the strong solution exists globally for any α, β > 3. This improves the previous results significantly.
The paper contains the proof of global existence of weak solutions of the viscous compressible barotropic gas for the initial-boundary value problem in a finite channel.
The paper contains the proof of global existence of weak solutions viscous compressible isothermal bipolar fluid of initial boundary value in a finite channel.
The main objective of this paper is to study the global strong solution of the parabolic-hyperbolic incompressible magnetohydrodynamic model in the two dimensional space. Based on Agmon, Douglis, and Nirenberg’s estimates for the stationary Stokes equation and Solonnikov’s theorem on --estimates for the evolution Stokes equation, it is shown that this coupled magnetohydrodynamic equations possesses a global strong solution. In addition, the uniqueness of the global strong solution is obtained.
We prove the global well-posedness of the 2-D Boussinesq system with temperature dependent thermal diffusivity and zero viscosity coefficient.
This paper is devoted to the study of the lifespan of the solutions of the primitive equations for less regular initial data. We interpolate the globall well-posedness results for small initial data in given by the Fujita-Kato theorem, and the result from [6] which gives global well-posedness if the Rossby parameter is small enough, and for regular initial data (oscillating part in and quasigeostrophic part in ).
In this paper we prove the existence of a global φ-attractor in the weak topology of the natural phase space for the family of multi-valued processes generated by solutions of a nonautonomous modified 3D Bénard system in unbounded domains for which Poincaré inequality takes place.
The aim of this paper is to find estimates of the Green’s function of stationary discrete shock profiles and discrete boundary layers of the modified Lax–Friedrichs numerical scheme, by using techniques developed by Zumbrun and Howard [27] in the continuous viscous setting.
The aim of this paper is to find estimates of the Green's function
of stationary discrete shock profiles and discrete boundary layers
of the modified Lax–Friedrichs numerical
scheme, by using techniques developed by Zumbrun and Howard [CITE] in the continuous viscous setting.
Currently displaying 21 –
35 of
35