The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We investigate the role of Hertling-Manin condition on the structure constants of an associative commutative algebra in the theory of integrable systems of hydrodynamic type. In such a framework we introduce the notion of -manifold with compatible connection generalizing a structure introduced by Manin.
We consider a system
of degenerate parabolic equations modelling a
thin film, consisting of two layers of immiscible Newtonian liquids, on
a solid horizontal substrate.
In addition, the model includes the presence of insoluble surfactants on
both the free liquid-liquid and liquid-air interfaces,
and the presence of both attractive and repulsive van der Waals forces
in terms of the heights of the two layers.
We show that this system formally satisfies a Lyapunov structure,
and a second energy...
We consider the flow of a viscous incompressible fluid through a rigid
homogeneous porous medium. The permeability of the medium depends
on the pressure, so that the model is nonlinear. We propose a finite
element discretization of this problem and, in the case where the
dependence on the pressure is bounded from above and below, we prove
its convergence to the solution and propose an algorithm to solve
the discrete system. In the case where the dependence
on the pressure is exponential, we propose...
We analyze semidiscrete and second-order in time fully discrete finite element methods for the Kuramoto-Sivashinsky equation.
This note is concerned with proving the finite speed of propagation for some non-local porous medium equation by adapting arguments developed by Caffarelli and Vázquez (2010).
We study the existence and long-time behavior of weak solutions to Newton-Boussinesq equations in two-dimensional domains satisfying the Poincaré inequality. We prove the existence of a unique minimal finite-dimensional pullback -attractor for the process associated to the problem with respect to a large class of non-autonomous forcing terms.
Nous étudions le comportement asymptotique des fluides incompressibles dans les domaines extérieurs, quand l’obstacle devient de plus en plus fin, tendant vers une courbe. Nous étendons les travaux d’Iftimie, Lopes Filho, Nussenzveig Lopes et Kelliher dans lesquels les auteurs considèrent des obstacles se contractant vers un point. En utilisant des outils de l’analyse complexe, nous détaillerons le cas des fluides idéaux en dimension deux autour d’une courbe. Nous donnerons ensuite, à titre indicatif,...
On généralise aux fluides incompressibles à densité variable un certain nombre de résultats bien connus pour les équations de Navier-Stokes et d’Euler incompressibles.
Motivated by rotating fluids, we study incompressible fluids
with anisotropic viscosity.
We use anisotropic spaces that enable us to prove existence
theorems
for less regular initial data than usual. In the case of rotating
fluids, in the whole space, we prove Strichartz-type anisotropic,
dispersive estimates
which allow us to prove global wellposedness for fast enough
rotation.
We study the existence and the uniqueness of a solution to the linear Fokker-Planck equation in a bounded domain of when is a “confinement” vector field. This field acting for instance like the inverse of the distance to the boundary. An illustration of the obtained results is given within the framework of fluid mechanics and polymer flows.
The existence of a global motion of magnetohydrodynamic fluid in a domain bounded by a free surface and under the external electrodynamic field is proved. The motion is such that the velocity and magnetic field are small in the H³-space.
Currently displaying 1 –
20 of
22