The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 181 –
200 of
364
We consider the -critical focusing non-linear Schrödinger equation in -d. We demonstrate the existence of a large set of initial data close to the ground state soliton resulting in the pseudo-conformal type blow-up behavior. More specifically, we prove a version of a conjecture of Perelman, establishing the existence of a codimension one stable blow-up manifold in the measurable category.
For the nonlinear heat equation with a fractional Laplacian , 1 < α ≤ 2, the first initial-boundary value problem in a disk is considered. Small initial conditions, homogeneous boundary conditions, and periodicity conditions in the angular coordinate are imposed. Existence and uniqueness of a global-in-time solution is proved, and the solution is constructed in the form of a series of eigenfunctions of the Laplace operator in the disk. First-order long-time asymptotics of the solution is obtained....
We prove two new results about the Cauchy problem in the energy space for nonlinear Schrödinger equations on four-dimensional compact manifolds. The first one concerns global well-posedness for Hartree-type nonlinearities and includes approximations of cubic NLS on the sphere as a particular case. The second one provides, in the case of zonal data on the sphere, local well-posedness for quadratic nonlinearities as well as a necessary and sufficient condition of global well-posedness for small energy...
We study numerically the semiclassical limit for the nonlinear
Schrödinger equation thanks to a modification of the Madelung
transform due to Grenier. This approach allows for the presence of
vacuum. Even if the mesh
size and the time step do not depend on the
Planck constant, we recover the position and current densities in the
semiclassical limit, with a numerical rate of convergence in
accordance with the theoretical
results, before shocks appear in the limiting Euler
equation. By using simple...
We study numerically the semiclassical limit for the nonlinear
Schrödinger equation thanks to a modification of the Madelung
transform due to Grenier. This approach allows for the presence of
vacuum. Even if the mesh
size and the time step do not depend on the
Planck constant, we recover the position and current densities in the
semiclassical limit, with a numerical rate of convergence in
accordance with the theoretical
results, before shocks appear in the limiting Euler
equation. By using simple...
In this paper, we present numerical methods for the determination of solitons, that consist in spatially localized stationary states of nonlinear scalar equations or coupled systems arising in nonlinear optics. We first use the well-known shooting method in order to find excited states (characterized by the number of nodes) for the classical nonlinear Schrödinger equation. Asymptotics can then be derived in the limits of either large are large nonlinear exponents . In a second part, we compute...
In this paper, we present numerical methods
for the determination of solitons, that consist in spatially localized
stationary states of nonlinear scalar equations or coupled systems
arising in nonlinear optics.
We first use the well-known shooting method in order to find
excited states (characterized by the number k of nodes) for the
classical nonlinear Schrödinger equation. Asymptotics can then
be derived in the limits of either large k are large nonlinear
exponents σ.
In a second part, we compute...
In this article we implement different numerical schemes to simulate the Schrödinger-Debye equations that occur in nonlinear optics. Since the existence of blow-up solutions is an open problem, we try to compute such solutions. The convergence of the methods is proved and simulations seem indeed to show that for at least small delays self-focusing solutions may exist.
In this article we implement different numerical schemes to simulate the
Schrödinger-Debye equations that occur in nonlinear optics. Since the
existence of blow-up solutions is an open problem, we try to compute such
solutions. The convergence of the methods is proved and simulations seem
indeed to show that for at least small delays self-focusing solutions may
exist.
We deal with numerical analysis and simulations of the Davey-Stewartson equations which model, for example, the evolution of water surface waves. This time dependent PDE system is particularly interesting as a generalization of the 1-d integrable NLS to 2 space dimensions. We use a time splitting spectral method where we give a convergence analysis for the semi-discrete version of the scheme. Numerical results are presented for various blow-up phenomena of the equation, including blowup of defocusing,...
We deal with numerical analysis and simulations of the Davey-Stewartson equations
which model, for example, the evolution of water surface waves.
This time dependent PDE system is particularly interesting as a generalization
of the 1-d integrable NLS to 2 space dimensions.
We use a time splitting spectral method where
we give a convergence analysis for the semi-discrete version of the scheme.
Numerical results are presented for various blow-up phenomena of
the equation, including blowup of defocusing,...
We consider an energy-functional describing rotating superfluids at a rotating velocity , and prove similar results as for the Ginzburg-Landau functional of superconductivity: mainly the existence of branches of solutions with vortices, the existence of a critical above which energy-minimizers have vortices, evaluations of the minimal energy as a function of , and the derivation of a limiting free-boundary problem.
We consider an energy-functional describing rotating superfluids at a
rotating velocity ω, and prove similar results as for the
Ginzburg-Landau functional of superconductivity: mainly the existence
of branches of solutions with vortices, the existence of a critical
ω above which energy-minimizers have vortices, evaluations
of the minimal energy as a function of ω, and the derivation of a limiting free-boundary problem.
We provide a detailed analysis of the minimizers of the functional , , subject to the constraint . This problem,e.g., describes the long-time behavior of the parabolic Anderson in probability theory or ground state solutions of a nonlinear Schrödinger equation. While existence can be proved with standard methods, we show that the usual uniqueness results obtained with PDE-methods can be considerably simplified by additional variational arguments. In addition, we investigate qualitative properties...
Currently displaying 181 –
200 of
364