The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We present some new problems in spectral optimization. The first one consists in determining the best domain for the Dirichlet energy (or for the first eigenvalue) of the metric Laplacian, and we consider in particular Riemannian or Finsler manifolds, Carnot-Carathéodory spaces, Gaussian spaces. The second one deals with the optimal shape of a graph when the minimization cost is of spectral type. The third one is the optimization problem for a Schrödinger potential in suitable classes.
The paper deals with a Dirichlet spectral problem for an elliptic operator with ε-periodic coefficients in a 3D bounded domain of small thickness δ. We study the asymptotic behavior of the spectrum as ε and δ tend to zero. This asymptotic behavior depends crucially on whether ε and δ are of the same order (δ ≈ ε), or ε is much less than δ(δ = ετ, τ < 1), or ε is much greater than δ(δ = ετ, τ > 1). We consider all three cases.
The paper deals with a Dirichlet spectral problem for an elliptic operator with
ε-periodic coefficients in a 3D bounded domain of small thickness
δ. We study the asymptotic behavior of the spectrum as
ε and δ tend to zero. This asymptotic behavior depends
crucially on whether ε and δ are of the same order
(δ ≈ ε), or ε is much less than
δ(δ = ετ, τ < 1),
or ε is much greater than
δ(δ = ετ, τ > 1).
...
The use of one theorem of spectral analysis proved by Bordoni on a model of linear anisotropic beam proposed by the author allows the determination of the variation range of vibration frequencies of a beam in two typical restraint conditions. The proposed method is very general and allows its use on a very wide set of problems of engineering practice and mathematical physics.
In this paper, we consider shape optimization problems for the principal eigenvalues of second order uniformly elliptic operators in bounded domains of . We first recall the classical Rayleigh-Faber-Krahn problem, that is the minimization of the principal eigenvalue of the Dirichlet Laplacian in a domain with fixed Lebesgue measure. We then consider the case of the Laplacian with a bounded drift, that is the operator , for which the minimization problem is still well posed. Next, we deal with...
The paper deals with the genericity of domain-dependent spectral properties of the Laplacian-Dirichlet operator. In particular we prove that, generically, the squares of the eigenfunctions form a free family. We also show that the spectrum is generically non-resonant.
The results are obtained by applying global perturbations of the domains
and exploiting analytic perturbation properties.
The work is motivated by two applications: an existence result for
the problem of maximizing the rate of...
Let A be a pseudodifferential operator on whose Weyl symbol a is a strictly positive smooth function on such that for some ϱ>0 and all |α|>0, is bounded for large |α|, and . Such an operator A is essentially selfadjoint, bounded from below, and its spectrum is discrete. The remainder term in the Weyl asymptotic formula for the distribution of the eigenvalues of A is estimated. This is done by applying the method of approximate spectral projectors of Tulovskiĭ and Shubin.
On donne une borne supérieur du nombre des valeurs propres négatives de l’opérateur de Schrödinger généralisé, cette borne est donnée en fonction d’un nombre fini de cube dyadiques minimaux.
Sufficient conditions for the absence of absolutely continuous spectrum for unbounded Jacobi operators are given. A class of unbounded Jacobi operators with purely singular continuous spectrum is constructed as well.
Small amplitude vibrations of an elastic structure completely filled by a fluid are considered. Describing the structure by displacements and the fluid by its pressure field one arrives at a non-selfadjoint eigenvalue problem. Taking advantage of a Rayleigh functional we prove that its eigenvalues can be characterized by variational principles of Rayleigh, minmax and maxmin type.
Currently displaying 61 –
80 of
82