The search session has expired. Please query the service again.
Displaying 541 –
560 of
4417
Mathematical models for cancer treatment that include immunological activity are considered as an optimal control problem with an objective that is motivated by a separatrix of the uncontrolled system. For various growth models on the cancer cells the existence and optimality of singular controls is investigated. For a Gompertzian growth function a synthesis of controls that move the state into the region of attraction of a benign equilibrium point is developed.
An optimal control problem is considered where the state of the system is described by a variational inequality for the operator w → εΔ²w - φ(‖∇w‖²)Δw. A set of nonnegative functions φ is used as a control region. The problem is shown to have a solution for every fixed ε > 0. Moreover, the solvability of the limit optimal control problem corresponding to ε = 0 is proved. A compactness property of the solutions of the optimal control problems for ε > 0 and their relation with the limit problem...
An optimal control problem is studied for a predator-prey system of PDE, with a logistic
growth rate of the prey and a general functional response of the predator. The control
function has two components. The purpose is to maximize a mean density of the two species
in their habitat. The existence of the optimal solution is analyzed and some necessary
optimality conditions are established. The form of the optimal control is found in some
particular...
We deal with an optimal control problem governed by a pseudoparabolic variational inequality with controls in coefficients and in convex sets of admissible states. The existence theorem for an optimal control parameter will be proved. We apply the theory to the original design problem for a deffection of a viscoelastic plate with an obstacle, where the variable thickness of the plate appears as a control variable.
Given two measured spaces and , and a third space , given two functions and , we study the problem of finding two maps and such that the images and coincide, and the integral is maximal. We give condition on and for which there is a unique solution.
Given two measured spaces and , and a third space Z,
given two functions u(x,z) and v(x,z), we study the problem of finding two
maps and such that the images
and coincide, and the integral is maximal. We give condition on u and v for which
there is a unique solution.
In this paper we consider hemivariational inequalities of hyperbolic type. The existence result for hemivariational inequality is given and the existence theorem for the optimal shape design problem is shown.
This work concerns controlled Markov chains with finite state space and compact action sets. The decision maker is risk-averse with constant risk-sensitivity, and the performance of a control policy is measured by the long-run average cost criterion. Under standard continuity-compactness conditions, it is shown that the (possibly non-constant) optimal value function is characterized by a system of optimality equations which allows to obtain an optimal stationary policy. Also, it is shown that the...
In this paper, we are interested in finding the optimal shape of a magnet. The criterion to maximize is the jump of the electromagnetic field between two different configurations. We prove existence of an optimal shape into a natural class of domains. We introduce a quasi-Newton type algorithm which moves the boundary. This method is very efficient to improve an initial shape. We give some numerical results.
In this paper, we are interested in finding the optimal shape
of a magnet. The criterion to maximize is the jump of the
electromagnetic field between two different configurations.
We prove existence of an optimal shape into a natural class
of domains. We introduce a quasi-Newton type algorithm which
moves the boundary. This method is very efficient to improve
an initial shape. We give some numerical results.
Currently displaying 541 –
560 of
4417