Sur les feuilletages des variétés fibrées
Nous construisons un feuilletage exotique de classe sur tout fibré hyperbolique de genre . Nous montrons égalemnt des théorèmes de rigidité des feuilletages modèles sur certains fibrés pseudo-Anosov.
Nous construisons un feuilletage exotique de classe sur tout fibré hyperbolique de genre . Nous montrons égalemnt des théorèmes de rigidité des feuilletages modèles sur certains fibrés pseudo-Anosov.
Nous étudions ici les feuilletages de codimension un induits par les actions non dégénérées de groupes nilpotents.L’existence de feuilles non compactes isolées d’un côté, implique celle d’idéaux remarquables dans l’algèbre de Lie du groupe.Dans la deuxième partie, nous montrons, dans le cas des groupes de Heisenberg des théorèmes de fibration et de cobordisme généralisant ceux obtenus par H. Rosenberg et l’auteur pour (cf. Cahiers IHES, 1974).
La caustique d?un point sur une variété riemannienne est l?ensemble des points d?intersection des géodésiques infiniment voisins partant de ce point. Jacobi a remarqué, en utilisant un raisonnement topologique, que la caustique d?un point sur une surface convexe fermée doit avoir des points de rebroussement. Il a aussi annoncé (sans démonstration) que le nombre de ces points est quatre pour les caustiques sur les surfaces d?ellipsoïdes (Jacobi, 1964). Dans cette note j?essaie d?inclure les théorèmes...
Le résultat principal de cet article est une formule explicite donnant le nombre de Milnor d’une singularité isolée d’intersection complète quasi-homogène d’une courbe de en fonction des degrés et des poids. Ce calcul effectué par des méthodes topologiques repose sur le théorème suivant : la fibre de Milnor d’une singularité isolée d’intersection complète quasi-homogène ne dépend que des degrés et des poids à difféomorphisme près. Une autre conséquence de ce théorème est l’existence d’une morsification...
On définit la notion de structure transversalement affine sur un feuilletage de codimension 1, de variété ambiante paracompacte séparée. Dans le cas transversalement orientable cette définition est traduite en termes de formes de Pfaff, ce qui facilite la construction des exemples (feuilletages presque sans holonomie sur