Displaying 181 – 200 of 225

Showing per page

Propagation des singularités pour les opérateurs différentiels de type principal localement résolubles à coefficients analytiques en dimension 2

Paul Godin (1979)

Annales de l'institut Fourier

Sur une variété analytique paracompacte de dimension 2, on considère un opérateur différentiel P à symbole principal p m analytique vérifiant la condition ( 𝒫 ) de Nirenberg et Treves. En ajoutant une nouvelle variable et en utilisant des estimations a priori de type Carleman, on montre qu’il y a propagation des singularités pour P , dans p m - 1 ( 0 ) , le long des feuilles intégrales du système différentiel engendré par les champs hamiltoniens de Re p m et Im p m .

Propagation of singularities for operators with multiple involutive characteristics

Johannes Sjöstrand (1976)

Annales de l'institut Fourier

Let P be a classical pseudodifferential operator of order m on a paracompact C manifold X . Let p m be the principal symbol and assume that Σ = p m - 1 ( 0 ) is an involutive C sub-manifold of T * X 0 , satisfying a certain transversality condition. We assume that p m vanishes exactly to order M on Σ and that the derivatives of order M satisfy a certain condition, inspired from the Calderòn uniqueness theorem (usually empty when M = 2 ). Suppose that a Levi condition is valid for the lower order symbols. If u 𝒟 ' ( X ) , P u C ( X ) , then W F ( u ) is a union...

Propagation of singularities for the wave equation on manifolds with corners

András Vasy (2004/2005)

Séminaire Équations aux dérivées partielles

In this talk we describe the propagation of 𝒞 and Sobolev singularities for the wave equation on 𝒞 manifolds with corners M equipped with a Riemannian metric g . That is, for X = M × t , P = D t 2 - Δ M , and u H loc 1 ( X ) solving P u = 0 with homogeneous Dirichlet or Neumann boundary conditions, we show that WF b ( u ) is a union of maximally extended generalized broken bicharacteristics. This result is a 𝒞 counterpart of Lebeau’s results for the propagation of analytic singularities on real analytic manifolds with appropriately stratified boundary,...

Propagation of singularities in many-body scattering in the presence of bound states

András Vasy (1999)

Journées équations aux dérivées partielles

In these lecture notes we describe the propagation of singularities of tempered distributional solutions u 𝒮 ' of ( H - λ ) u = 0 , where H is a many-body hamiltonian H = Δ + V , Δ 0 , V = a V a , and λ is not a threshold of H , under the assumption that the inter-particle (e.g. two-body) interactions V a are real-valued polyhomogeneous symbols of order - 1 (e.g. Coulomb-type with the singularity at the origin removed). Here the term “singularity” provides a microlocal description of the lack of decay at infinity. Our result is then that the...

Propagation through trapped sets and semiclassical resolvent estimates

Kiril Datchev, András Vasy (2012)

Annales de l’institut Fourier

Motivated by the study of resolvent estimates in the presence of trapping, we prove a semiclassical propagation theorem in a neighborhood of a compact invariant subset of the bicharacteristic flow which is isolated in a suitable sense. Examples include a global trapped set and a single isolated periodic trajectory. This is applied to obtain microlocal resolvent estimates with no loss compared to the nontrapping setting.

Properties of a hypothetical exotic complex structure on P 3

J. R. Brown (2007)

Mathematica Bohemica

We consider almost-complex structures on P 3 whose total Chern classes differ from that of the standard (integrable) almost-complex structure. E. Thomas established the existence of many such structures. We show that if there exists an “exotic” integrable almost-complex structures, then the resulting complex manifold would have specific Hodge numbers which do not vanish. We also give a necessary condition for the nondegeneration of the Frölicher spectral sequence at the second level.

Currently displaying 181 – 200 of 225