A posteriori error estimate of approximate solutions to a mildly nonlinear elliptic boundary value problem
We derive a residual-based a posteriori error estimator for a discontinuous Galerkin approximation of the Steklov eigenvalue problem. Moreover, we prove the reliability and efficiency of the error estimator. Numerical results are provided to verify our theoretical findings.
The paper presents an a posteriori error estimator for a (piecewise linear) nonconforming finite element approximation of the heat equation in , or 3, using backward Euler’s scheme. For this discretization, we derive a residual indicator, which use a spatial residual indicator based on the jumps of normal and tangential derivatives of the nonconforming approximation and a time residual indicator based on the jump of broken gradients at each time step. Lower and upper bounds form the main results...
The paper presents an a posteriori error estimator for a (piecewise linear) nonconforming finite element approximation of the heat equation in , d=2 or 3, using backward Euler's scheme. For this discretization, we derive a residual indicator, which use a spatial residual indicator based on the jumps of normal and tangential derivatives of the nonconforming approximation and a time residual indicator based on the jump of broken gradients at each time step. Lower and upper bounds form the main...
In this article we develop a posteriori error estimates for second order linear elliptic problems with point sources in two- and three-dimensional domains. We prove a global upper bound and a local lower bound for the error measured in a weighted Sobolev space. The weight considered is a (positive) power of the distance to the support of the Dirac delta source term, and belongs to the Muckenhoupt’s class A2. The theory hinges on local approximation properties of either Clément or Scott–Zhang interpolation...
We present new a posteriori error estimates for the finite volume approximations of elliptic problems. They are obtained by applying functional a posteriori error estimates to natural extensions of the approximate solution and its flux computed by the finite volume method. The estimates give guaranteed upper bounds for the errors in terms of the primal (energy) norm, dual norm (for fluxes), and also in terms of the combined primal-dual norms. It is shown that the estimates provide sharp upper and...
In this paper we combine the dual-mixed finite element method with a Dirichlet-to-Neumann mapping (given in terms of a boundary integral operator) to solve linear exterior transmission problems in the plane. As a model we consider a second order elliptic equation in divergence form coupled with the Laplace equation in the exterior unbounded region. We show that the resulting mixed variational formulation and an associated discrete scheme using Raviart-Thomas spaces are well posed, and derive the...
Systems of parabolic differential equations are studied in the paper. Two a posteriori error estimates for the approximate solution obtained by the finite element method of lines are presented. A statement on the rate of convergence of the approximation of error by estimator to the error is proved.
We consider a non-conforming stabilized domain decomposition technique for the discretization of the three-dimensional Laplace equation. The aim is to extend the numerical analysis of residual error indicators to this model problem. Two formulations of the problem are considered and the error estimators are studied for both. In the first one, the error estimator provides upper and lower bounds for the energy norm of the mortar finite element solution whereas in the second case, it also estimates...
We consider a non-conforming stabilized domain decomposition technique for the discretization of the three-dimensional Laplace equation. The aim is to extend the numerical analysis of residual error indicators to this model problem. Two formulations of the problem are considered and the error estimators are studied for both. In the first one, the error estimator provides upper and lower bounds for the energy norm of the mortar finite element solution whereas in the second case, it also estimates...
This paper is devoted to the study of a posteriori error estimates for the scalar nonlinear convection-diffusion-reaction equation . The estimates for the error between the exact solution and an upwind finite volume approximation to the solution are derived in the -norm, independent of the diffusion parameter . The resulting a posteriori error estimate is used to define an grid adaptive solution algorithm for the finite volume scheme. Finally numerical experiments underline the applicability...
This paper is devoted to the study of a posteriori error estimates for the scalar nonlinear convection-diffusion-reaction equation . The estimates for the error between the exact solution and an upwind finite volume approximation to the solution are derived in the L1-norm, independent of the diffusion parameter D. The resulting a posteriori error estimate is used to define an grid adaptive solution algorithm for the finite volume scheme. Finally numerical experiments underline the applicability...
We deal with a posteriori error estimates of the discontinuous Galerkin method applied to the nonstationary heat conduction equation. The problem is discretized in time by the backward Euler scheme and a posteriori error analysis is based on the Helmholtz decomposition.
In this paper, a new a posteriori error estimator for nonconforming convection diffusion approximation problem, which relies on the small discrete problems solution in stars, has been established. It is equivalent to the energy error up to data oscillation without any saturation assumption nor comparison with residual estimator
For a nonconforming finite element approximation of an elliptic model problem, we propose a posteriori error estimates in the energy norm which use as an additive term the “post-processing error” between the original nonconforming finite element solution and an easy computable conforming approximation of that solution. Thus, for the error analysis, the existing theory from the conforming case can be used together with some simple additional arguments. As an essential point, the property is exploited...
For a nonconforming finite element approximation of an elliptic model problem, we propose a posteriori error estimates in the energy norm which use as an additive term the “post-processing error” between the original nonconforming finite element solution and an easy computable conforming approximation of that solution. Thus, for the error analysis, the existing theory from the conforming case can be used together with some simple additional arguments. As an essential point, the property is...