The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 801 –
820 of
1956
We will investigate the possibility to use superconvergence results for the mixed finite element discretizations of some time-dependent partial differential equations in the construction of a posteriori error estimators. Since essentially the same approach can be followed in two space dimensions, we will, for simplicity, consider a model problem in one space dimension.
FEM discretizations of arbitrary order are considered for a singularly perturbed one-dimensional reaction-diffusion problem whose solution exhibits strong layers. A posteriori error bounds of interpolation type are derived in the maximum norm. An adaptive algorithm is devised to resolve the boundary layers. Numerical experiments complement our theoretical results.
We consider the efficient and reliable solution of linear-quadratic optimal control problems governed by parametrized parabolic partial differential equations. To this end, we employ the reduced basis method as a low-dimensional surrogate model to solve the optimal control problem and develop a posteriori error estimation procedures that provide rigorous bounds for the error in the optimal control and the associated cost functional. We show that our approach can be applied to problems involving...
We present a technique for the rapid and reliable prediction of linear-functional outputs of elliptic coercive partial differential equations with affine parameter dependence. The essential components are (i) (provably) rapidly convergent global reduced-basis approximations – Galerkin projection onto a space spanned by solutions of the governing partial differential equation at selected points in parameter space; (ii) a posteriori error estimation – relaxations of the error-residual equation...
We present a technique for the rapid and reliable prediction of
linear-functional
outputs of elliptic coercive partial differential equations with affine
parameter dependence. The essential components are (i )
(provably) rapidly
convergent global reduced-basis approximations – Galerkin projection
onto a space
WN spanned by solutions of the governing partial differential
equation at N
selected points in parameter space; (ii ) a posteriori
error estimation
– relaxations of the error-residual equation...
We derive a posteriori estimates for a discretization in space of the standard
Cahn–Hilliard equation with a double obstacle free energy.
The derived estimates are robust and efficient, and in practice are combined
with a heuristic time step adaptation.
We present numerical experiments in two and three space dimensions and compare
our method with an existing heuristic spatial mesh adaptation algorithm.
We deal with the numerical solution of the nonstationary heat conduction equation with mixed Dirichlet/Neumann boundary conditions. The backward Euler method is employed for the time discretization and the interior penalty discontinuous Galerkin method for the space discretization. Assuming shape regularity, local quasi-uniformity, and transition conditions, we derive both a posteriori upper and lower error bounds. The analysis is based on the Helmholtz decomposition, the averaging interpolation...
In this paper, we consider mortar-type Crouzeix-Raviart element discretizations for second order elliptic problems with discontinuous coefficients. A preconditioner for the FETI-DP method is proposed. We prove that the condition number of the preconditioned operator is bounded by , where and are mesh sizes. Finally, numerical tests are presented to verify the theoretical results.
Currently displaying 801 –
820 of
1956