The search session has expired. Please query the service again.
Displaying 441 –
460 of
511
The Discontinuous Galerkin Time Domain (DGTD) methods are now popular for the solution of wave propagation problems. Able to deal with unstructured, possibly locally-refined meshes, they handle easily complex geometries and remain fully explicit with easy parallelization and extension to high orders of accuracy. Non-dissipative versions exist, where some discrete electromagnetic energy is exactly conserved. However, the stability limit of the methods, related to the smallest elements in the mesh,...
The Discontinuous Galerkin Time Domain (DGTD) methods are now popular for the solution of wave propagation problems. Able to deal with unstructured, possibly locally-refined meshes, they handle
easily complex geometries and remain fully explicit with easy parallelization and extension to high orders of accuracy. Non-dissipative versions exist, where some discrete electromagnetic energy is exactly conserved. However, the stability limit of the methods, related to the smallest elements in the mesh,...
In this paper we study the temporal convergence of a locally implicit discontinuous Galerkin method for the time-domain Maxwell’s equations modeling electromagnetic waves propagation. Particularly, we wonder whether the method retains its second-order ordinary differential equation (ODE) convergence under stable simultaneous space-time grid refinement towards the true partial differential equation (PDE) solution. This is not a priori clear due to the component splitting which can introduce order...
In this paper we study the temporal convergence of a locally implicit discontinuous Galerkin method for the time-domain Maxwell’s equations modeling electromagnetic waves propagation. Particularly, we wonder whether the method retains its second-order ordinary differential equation (ODE) convergence under stable simultaneous space-time grid refinement towards the true partial differential equation (PDE) solution. This is not a priori clear due to the component splitting which can introduce order...
In this paper, we consider the back and forth nudging algorithm that has been introduced
for data assimilation purposes. It consists of iteratively and alternately solving forward
and backward in time the model equation, with a feedback term to the observations. We
consider the case of 1-dimensional transport equations, either viscous or inviscid, linear
or not (Burgers’ equation). Our aim is to prove some theoretical results on the
convergence,...
In this paper, we consider the back and forth nudging algorithm that has been introduced for data assimilation purposes. It consists of iteratively and alternately solving forward and backward in time the model equation, with a feedback term to the observations. We consider the case of 1-dimensional transport equations, either viscous or inviscid, linear or not (Burgers’ equation). Our aim is to prove some theoretical results on the convergence, and convergence properties, of this algorithm. We...
In this paper, we consider the back and forth nudging algorithm that has been introduced
for data assimilation purposes. It consists of iteratively and alternately solving forward
and backward in time the model equation, with a feedback term to the observations. We
consider the case of 1-dimensional transport equations, either viscous or inviscid, linear
or not (Burgers’ equation). Our aim is to prove some theoretical results on the
convergence,...
We are concerned with the structure of the operator corresponding to the Lax–Friedrichs method. At first, the phenomenae which may arise by the naive use of the Lax–Friedrichs scheme are analyzed. In particular, it turns out that the correct definition of the method has to include the details of the discretization of the initial condition and the computational domain. Based on the results of the discussion, we give a recipe that ensures that the number of extrema within the discretized version of...
We are concerned with the structure of the operator
corresponding to the Lax–Friedrichs method.
At first, the phenomenae which may arise by the
naive use of the Lax–Friedrichs scheme are analyzed.
In particular, it turns out that the correct
definition of the method has to include the details
of the discretization of the initial condition
and the computational domain. Based on the results of the
discussion, we give a recipe that ensures that the
number of extrema within the discretized version...
In the present work, the symmetrized sequential-parallel decomposition method with the fourth order accuracy for the solution of Cauchy abstract problem with an operator under a split form is presented. The fourth order accuracy is reached by introducing a complex coefficient with the positive real part. For the considered scheme, the explicit a priori estimate is obtained.
In the present work, the symmetrized sequential-parallel
decomposition method with the fourth order accuracy for the
solution of Cauchy abstract problem with an operator under a split
form is presented. The fourth order accuracy is reached by
introducing a complex coefficient with the positive real part. For
the considered scheme, the explicit a priori estimate is obtained.
We study the theoretical and numerical coupling of two hyperbolic systems of conservation laws at a fixed interface. As already proven in the scalar case, the coupling preserves in a weak sense the continuity of the solution at the interface without imposing the overall conservativity of the coupled model. We develop a detailed analysis of the coupling in the linear case. In the nonlinear case, we either use a linearized approach or a coupling method based on the solution of a Riemann problem. We...
Currently displaying 441 –
460 of
511